Manual Técnico do Programa SisCCoH

Versão 1.1 Maio, 2019

Sistema para Cálculos de Componentes Hidráulicos

O conteúdo e as especificações do programa podem estar sujeitos a alterações sem aviso prévio. A Pimenta de Ávila e a UFMG se reservam o direito de alterar e atualizar sem aviso prévio.

Conteúdo

Lista de	e Símbolos	2
Índice	de Figuras	6
Índice	de Tabelas	7
Aprese	ntação	8
Instalaç	ção e Desinstalação do SisCCoH	11
1 IN	TRODUÇÃO	12
2 CC	ONDUTOS FORÇADOS	14
2.1	Condutos Simples	14
2.1	1.1 Escoamento permanente	14
3 ES	COAMENTOS LIVRES	17
3.1	Máxima eficiência	17
3.2	Seções Regulares	19
3.2	2.1 Uniforme	19
3.2	2.2 Crítico	23
3.2	2.3 Variado	25
3.2	2.4 Canais em Enrocamento	35
4 ES	STRUTURAS HIDRÁULICAS	
4.1	Bueiros	
4.2	Escoamento em Degraus	42
4.2	2.1 Regime de Escoamento em Degraus	42
4.2	2.2 Regime Nappe Flow	46
4.2	2.3 Regime Skimming Flow	50
4.2	2.4 Canais em Trechos Distintos	59
4.2	2.5 Quedas Singulares	62
4.3	Bacias de dissipação por Ressalto Hidráulico.	63
4.4	Bacias de dissipação em enrocamento	67
5 SI	NGULARIDADES	72
5.1	Confluência de Canais	72
5.2	Curvas em Canais	77

Alexandre, Gladstone Rodrigues. Baptista, Márcio Benedito. Barcelos, Josiane Marinho.

Manual Técnico do SisCCoH / Gladstone Rodrigues Alexandre. Márcio Benedito Baptista, Josiane Marinho Barcelos. – 1. Ed. - Belo Horizonte: Pimenta de Ávila Consultoria e Departamento de Engenharia Hidráulica e Recursos Hídricos – EHR UFMG, 2019.

Diretoria da Pimenta de Ávila Joaquim Pimenta de Ávila Cristiano Vieira de Ávila

Departamento de Engenharia Hidráulica e Recursos Hídricos Márcio Benedito Baptista

Coordenação Gladstone Rodrigues Alexandre

Elaboração do texto Josiane Marinho Barcelos

Orientação e Revisão do Texto Márcio Benedito Baptista Gladstone Rodrigues Alexandre

Área da seção, seção molhada (m²), coeficiente usado no cálculo do А coeficiente de atrito no regime Skimming Flow. В Largura superficial (m) Binf. b Largura inferior (m) Largura interna da confluência (m) b_c Altura da borda livre (m) bordalivre Largura máxima da bacia de separação (m) bs Ce Perda de carga na entrada (m) C_s Perda de carga na saída (m) C_{med} Concentração média de ar Cu Coeficiente de uniformidade D Diâmetro (m) D_N Número de queda Diâmetro correspondente ao tamanho médio dos grãos (m) D_{50} D_{100} Diâmetro máximo dos grãos (m) d Adimensional usado no cálculo de Cmed no regime Skimming Flow d_w Profundidade representativa do escoamento (m) Ec Energia crítica (m) Er Energia residual do regime não uniforme do escoamento Skimming Flow (m) Eres Energia residual (m) Energia residual do regime aproximadamente uniforme do E_{ru, tipo A} escoamento Skimming Flow tipo A (m) Energia residual do regime aproximadamente uniforme do E_{ru. tipo B} escoamento Skimming Flow tipo B (m) Eq Equação auxiliar Energia total (m) E_{tot} f Coeficiente de perda de carga da equação universal; coeficiente de atrito no regime Skimming Flow f' Número de Froude rugoso Coeficiente de atrito máximo no regime Skimming Flow. fmáx Fr Número de Froude

Lista de Símbolos

g	Aceleração da gravidade (adotada igual a 9,81 m/s ²)
H _d	Altura da descida em degraus (m)
H _{dam}	Altura total da queda (m)
H _e	Altura do escoamento não uniforme (m)
H _{dissip}	Energia dissipada (m)
H _{máx}	Energia máxima (m)
$\mathbf{H}_{parede, m \textit{in, sem ressalto}}$	Altura da parede mínima sem formação de ressalto (m)
$\mathbf{H}_{parede, mín, com\ ressalto}$	Altura da parede mínima com formação de ressalto (m)
$H_{r,completo}$	Energia residual com ressalto completo (m).
H _{r,parcial}	Energia residual com ressalto parcial (m)
H_w	Altura do muro da escada (m)
ho	Altura acima do centro de gravidade (m)
Ι	Declividade do fundo do canal (m/m)
h _s	Profundidade da linha d'água (m)
$\mathbf{I}_{c, celular}$	Declividade crítica para bueiro celular (m/m)
I _{c, tubular}	Declividade crítica para bueiro tubular (m/m)
J	Declividade da energia total (m/m)
k	Rugosidade na superfície da calha
L	Comprimento (m)
L _A	Comprimento da aproximação da bacia de dissipação (m)
La	Posição de início da aeração (m)
L _s	Comprimento da bacia de dissipação (m)
L _{IV}	Comprimento da bacia de dissipação tipo IV(m)
L'	Semitrecho linear da sobrelevação (m)
Q	Vazão (m ³ /s)
L _d	Comprimento da queda (m)
Qadm,celular,o	Vazão admissível no bueiro celular funcionando como orifício
	(m³/s)
Qadm,celular, subcri	Vazão admissível no bueiro celular no regime subcrítico (m ³ /s)
Qadm, celular,supercri	Vazão admissível no bueiro celular no regime supercrítico (m ³ /s)
Qadm,tubular,0	Vazão admissível no bueiro tubular funcionando como orifício
	(m ³ /s)

Qadm, tubular ,subcri	Vazão admissível no bueiro tubular no regime subcrítico (m3/s)
Qadm, tubular, supercri	Vazão admissível no bueiro tubular no regime supercrítico (m³/s)
q _d	Vazão específica (m ³ /s.m)
Q_o	Vazão transportada em funcionamento como orifício (m3/s)
R _h	Raio hidráulico (m)
S	Altura do degrau (m)
$\left(\frac{S}{y_c}\right)_S$	Limite superior do regime Skimming Flow
$\left(\frac{S}{y_c}\right)_B$	Limite entre regimes do tipo A e B do Skimming Flow
U	Velocidade (m/s).
U _{celular,o}	Velocidade no bueiro celular funcionando como orifício (m/s)
Ucelular, subcri	Velocidade no bueiro celular no regime subcrítico (m/s).
Ucelular, supercri	Velocidade no bueiro celular no regime supercrítico (m/s)
U _{saída}	Velocidade de saída (m/s)
U _{tubular, o}	Velocidade no bueiro tubular funcionando como orifício (m/s)
U _{tubular,subcri}	Velocidade no bueiro tubular no regime subcrítico (m/s)
Utubular, supercri	Velocidade no bueiro tubular no regime supercrítico (m/s)
V _{cra}	Velocidade crítica de cavitação (m/s)
W _B	Espessura na saída da bacia (m)
\mathbf{W}_0	Largura do <i>riprap</i> (m)
Y _a	Profundidade de início da aeração (m)
<i>y</i> ₁ , <i>D</i> ₁	Profundidade conjugada a montante(m)
<i>y</i> ₂ , <i>D</i> ₂	Profundidade conjugada a jusante(m)
<i>y</i> ₃	Profundidade na saída da bacia (m)
Ус	Profundidade crítica (m)
Y 0,9	Profundidade normal para a concentração de ar igual a 0,9 (m)
Z	Declividade lateral (m/m)
α	Coeficiente de Coriolis
β	Coeficiente de Boussinesq, ângulo da onda em confluência de
	canais (°)

Δh	Perda de carga (m)
ΔΕ	Energia dissipada (m)
Δy_{sub}	Sobrelevação no regime subcrítico a montante da curva. (m)
Δy_{super}	Sobrelevação no regime supercrítico a montante da curva. (m)
δ	Ângulo médio entre as linhas do escoamento secundário e principal,
θ	Ângulo formado pelo alinhamento das quinas da escada ou entre
	dois canais em cofluência de canais (°)
μ	Coeficiente de contração

Índice de Figuras

Figura 1.1 - Arquitetura do Programa SisCCoH.	13
Figura 2.1 - Conduto Forçado Simples em regime de escoamento permanente.	15
Figura 3.1 - Dados e Resultados para condição de Máxima Eficiência	18
Figura 3.2 - Quantitativos e Relatório para condição de Máxima Eficiência	19
Figura 3.3 – Dados e Resultados de Escoamento permanente livre uniforme	22
Figura 3.4 - Quantitativos e Relatório de seção retangular sob regime de escoament	:0
permanente livre uniforme	22
Figura 3.5 - Dados e Resultados do Regime Crítico	24
Figura 3.6 - Dados e Resultados em Escoamento Gradualmente Variado.	27
Figura 3.7 - Visualização do Perfil da linha d'água e relatório	28
Figura 3.8 - Profundidade conjugada do ressalto hidráulico em canais inclinados.	30
Figura 3.9 - Comprimento dos ressaltos em canais inclinados.	31
Figura 3.10 - Dados e Resultados do ressalto hidráulico	34
Figura 3.11 - Visualização dos resultados e Relatório	35
Figura 3.12 - Dados e Resultados de Canais em enrocamento.	37
Figura 4.1 - Dados e Resultados de um bueiro tubular de concreto	41
Figura 4.2 - Visualização e Relatório de Bueiros	41
Figura 4.3 - Caracterização do escoamento de Canais em Degraus	46
Figura 4.4 - Caracterização do Regime de Escoamento Nappe Flow	49
Figura 4.5 - Dados e Resultados do regime Nappe Flow	49
Figura 4.6 - Relatório Regime de Escoamento Nappe Flow	50
Figura 4.7 - Esquema de escadas utilizadas. Em (a) descida em degraus utilizada pa	ıra
θ =19, 23, 30 e 55° e em (b) utilizada para θ =5,7, 8,5 e 11,3°.	51
Figura 4.8 - Dados e Resultados do regime Skimming Flow	56
Figura 4.9 - Visualização e Início do Escoamento do regime Skimming Flow	57
Figura 4.10 - Notificação das condições de contorno consideradas	57
Figura 4.11 - Risco de Cavitação e Relatório do regime Skimming Flow	58
Figura 4.12 - <i>Dados</i> em canais distintos em escoamento em degraus ou calha lisa.	60
Figura 4.13 - Resultados de canais com trechos distintos	61
Figura 4.14 - Relatório em Canais com Trechos Distintos	61
Figura 4.15 - Dados e Resultados de Quedas Singulares	62
Figura 4.16 - Visualização e Relatório de Quedas Singulares.	63

Figura 4.17 - Bacia de dissipação tipo III	65
Figura 4.18 - Bacia de dissipação IV	66
Figura 4.19 - <i>Dados</i> e <i>Resultados</i> de Bacias de Dissipação por Ressalto Hidráulico	67
Figura 4.20 - Visualização de Bacias de Dissipação por Ressalto Hidráulico	67
Figura 4.21 - Dados do módulo Bacias de dissipação em Enrocamento.	70
Figura 4.22 - Resultados do módulo Bacias de dissipação em Enrocamento	70
Figura 5.1 - Esquema da Dinâmica do Escoamento nas Confluência	72
Figura 5.2 - Esquema da junção de dois escoamentos torrenciais	75
Figura 5.3 - Dados da Confluência em Canais Retangulares	76
Figura 5.4 - Resultados da Confluência em Canais Retangulares	77
Figura 5.5 - Comprimento de trecho com sobrelevação.	79
Figura 5.6 - Ondas oblíquas em um trecho de canal em curva	80
Figura 5.7 - Dados e Altura da Sobrelevação de Curvas em Canais	81
Figura 5.8 - Pontos de sobrelevação de Curvas em Canais	82
Figura 5.9 - Comprimento da Sobrelevação e Resultados de Curvas em Canais	82

Índice de Tabelas

Tabela.2.1 - Variáveis a serem calculadas e dados necessários.	. 14
Tabela 3.1 - Geometria, profundidade normal e área de seções típicas regulares	. 17
Tabela 3.2 - Dados necessários	. 20
Tabela 3.3 - Tabela comparativa das curvas	. 26
Tabela 3.4 - Classificação do Ressalto Hidráulico	. 29
Tabela 4.1 - Exemplo de canal com trechos distintos	. 59
Tabela 5.1 - Cálculo dos coeficientes de Boussinesq	. 73

Apresentação

O *software SisCCoH* é um programa de livre acesso concebido, à princípio, durante pesquisas de caráter de Iniciação Científica no Departamento de Engenharia Hidráulica e Recursos Hídricos da EE – UFMG, sob orientação de Márcio Baptista e Márcia Lara, apoiado pela pró-reitoria de Pesquisa da UFMG, pela FAPEMIG e pelo CNPq.

O Software SisCCoH possui contribuições de diferentes profissionais relacionados à Hidráulica Computacional desde 1992. Primeiramente, sob o nome *Hidro* e foi posteriormente atualizado para *Hidrowin*, incorporando rotinas de cálculo do escoamento bruscamente variado, estruturas hidráulicas e redes ramificadas. Por fim, com o nome atual *SisCCoH*, incorporou o cálculo de escoamento em degraus, algumas singularidades e outras estruturas hidráulicas.

Inicialmente, em 1992, o programa *Hidro* foi desenvolvido para solucionar questões do cálculo de escoamento uniforme e gradualmente variado, tendo como linguagem original, o Fortran. O *software Hidro* foi desenvolvido por Márcio Resende e P. Lima. Durante os anos de 1994 e 1995, a nova versão *Hidro 1* foi desenvolvida na linguagem Pascal por Marcelo Medeiros e Márcio Cândido, apresentando resolução para Condutos Forçados.

Em 2001, o *software* foi renomeado para *Hidrowin* e continha as adaptações para a linguagem Visual Basic para Windows e foi desenvolvido por Francisco Eustáquio Oliveira Silva. De 2002 a 2005, não houve nenhuma publicação nova do programa, até que em 2005 quando Gladstone Rodrigues Alexandre desenvolveu a versão 2.0 e incorporou o cálculo de estruturas hidráulicas e escoamento bruscamente variado, além do cálculo de redes ramificadas, programado por Rubens Gomes Dias Campos. Novamente atualizado por Gladstone, em 2009, a versão *Hidrowin 2.1* readequou os cálculos dos módulos de escoamento em degraus.

Em 2014, o *software* foi renomeado para *SisCCoH*, versão 1.0, desenvolvido por Bernardo Mourão Mesquita na linguagem Visual Basic .NET para ambiente Windows utilizando a IDE Visual Studio 2008 Professional Edition. Essa versão incorporou módulos de escoamento em degraus de canais retangulares, de singularidades como canais em curva, confluência de canais e estruturas hidráulicas como bacias de dissipação e canais em enrocamento. Bernardo foi orientado por Gladstone Alexandre, Felipe Figueiredo e Lucas Brasil.

Participaram do desenvolvimento, numa parceria entre a UFMG e a Pimenta de Ávila, os professores Márcio Benedito Baptista e Márcia Maria Lara Pinto Coelho, engenheiros civis e doutores em Engenharia de Recursos Hídricos e Hidráulica, respectivamente; Gladstone Alexandre e Lucas Brasil, engenheiros civil e mestres em Engenharia de Recursos Hídricos; José Luiz Teixeira Garcia Filho e Bernardo Mourão Filho, ambos graduandos em Ciência da Computação em 2014; e Josiane Marinho Barcelos, graduanda em Engenharia Civil, incorporou-se ao projeto em 2018.

Atualmente, o software 1.1 do SisCCoH foi atualizado para a versão 1.1 por Josiane Marinho Barcelos, incorporando adequações ao programa e manual técnico, utilizando a linguagem VB.NET no compilador Visual Studio 2015, sob orientação de Gladstone Alexandre e Márcio Baptista.

A Tabela 1 resume o histórico do programa e suas principais características:

Ano	Programador (a)	Nome/ Versão	Linguagem de Programação
			Visual Basic .NET (Visual
2019	Josiane Barcelos	SisCCoH 1.1	Studio 2015), para ambiente
			Windows
			Visual Basic .NET (Visual
2014	Bernardo Mesquita	SisCCoH 1.0	Studio 2008 Professional
			Edition), para ambiente
			Windows
2009	Gladstone		Visual Basic 6.0, para ambiente
	Alexandre	HIDKOWIN 2.1	Windows
			(Continua)

Tabela 1 – Síntese do Histórico do Programa

Ano	Programador (a)	Nome/ Versão	Linguagem de Programação
2005	Gladstone Alexandre	HIDROwin 2.0	Visual Basic 6.0, para ambiente Windows
2001 e 2002	Francisco Eustáquio	HIDROwin	Visual Basic 6.0, para ambiente Windows
1994 e 1995	Marcelo Medeiros e Márcio Cândido	HIDRO 1	FORTRAN, para ambiente DOS
1992	Márcio Resende e P. Lima	HIDRO	FORTRAN, para ambiente DOS

(Continuação)

Conforme apresentado anteriormente, é possível perceber a participação ao longo de vinte e seis anos de diferentes profissionais, com a finalidade de desenvolver o *SisCCoH* para consulta, utilização para fins acadêmicos, bem como daqueles profissionais que se interessarem em utilizar a ferramenta para solucionar problemas no dimensionamento dos componentes hidráulicos.

Instalação e Desinstalação do SisCCoH

O programa é instalado a partir de um setup e para instalar no computador, o usuário deve seguir as seguintes etapas:

- Fazer o download na página do departamento de Engenharia Hidráulica e de Recursos Hídricos em <u>http://www.ehr.ufmg.br/downloads/</u> ou no site da empresa Pimenta de Ávila Consultoria Ltda no endereço <u>http://www.pimentadeavila.com.br/SisCCoH/</u>.
- Salvar o executável em algum diretório e executar o arquivo "SisCCoH 1.1" do tipo Pacote do Windows Installer.
- 3) Seguir as etapas de instalação, clicando em *Next* e aguardar a instalação.

Durante a instalação, o setup pode criar, uma pasta chamada *SisCCoH* no diretório selecionado, um atalho na área de trabalho e uma pasta de mesmo nome no Menu Iniciar.

O executável do programa após a instalação pode ser acessado na área de trabalho, no menu iniciar, ou se, durante a instalação o usuário não personalize a pasta de instalação na seguinte pasta: C:\Program Files (x86)\Pimenta de Ávila e EHR\SisCCoH 1.1. Além disso, o programa requer alguns arquivos e dados específicos para os cálculos e se forem excluídos, será notificado ao usuário que determinado arquivo não foi encontrado. Neste caso, recomenda-se a reinstalação do *SisCCoH*.

Para desinstalar o programa, acesse o menu Iniciar, em seguida, painel de Controle. Em Programas, selecione a opção "Desinstalar um programa" e pesquise por *SisCCoH 1.1*, selecione o programa e clique em Desinstalar e em seguida, com o aviso "Tem certeza de que deseja desinstalar *SisCCoH 1.1*?", clique em sim para confirmar a desinstalação ou em não, caso deseje cancelar. Em seguida uma janela permitindo a solicitação de alteração será exibida na tela e assim será necessária a confirmação. O programa pode também solicitar o fechamento de eventuais arquivos em PDF, para a finalização do processo e solicitar que reinicie a sua máquina para concluir a desinstalação.

1 DESCRIÇÃO GERAL

O programa *SisCCoH* é uma ferramenta computacional que permite o dimensionamento de diversos componentes hidráulicos, tais como: condutos forçados, canais em calha lisa, canais em degraus, canais em enrocamento, curvas em canais, confluência de canais, bacias de dissipação, bueiros, dentre outros.

A versão 1.1 do SisCCoH está agrupada nas seguintes tipologias de estruturas hidráulicas: Condutos Forçados, Escoamentos Livres, Estruturas Hidráulicas e Singularidades.

Em *Condutos Forçados*, é possível calcular variáveis como velocidade, perda de carga unitária, vazão, velocidade e diâmetro de condutos simples, desde que informado os dados necessários para o programa. Os cálculos para condutos compostos estão em desenvolvimento para lançamento em futuras versões.

No item *Escoamentos Livres*, a versão atual disponibilizou para o usuário os módulos de *Máxima Eficiência* e *Seções Regulares* que calcula parâmetros do escoamento uniforme, crítico, variado e canais em enrocamento.

Em *Estruturas Hidráulicas*, o *SisCCoH* auxilia no dimensionamento de *Bueiros*, *Escoamento em Degraus* e *Bacias de Dissipação por Ressalto Hidráulico* e por *Enrocamento*. Quanto ao *Escoamento em Degraus*, o programa apresenta-se como uma importante ferramenta para a caracterização do regime de escoamento em degraus (*Nappe Flow*, em transição ou *Skimming Flow*) além de permitir o cálculo de canais em trechos distintos e de quedas singulares.

E, por fim, em *Singularidades*, o *SisCCoH* auxilia no cálculo de *Confluência de Canais* e dimensionamento de *Curvas em Canais*.

O *SisCCoH* apresenta-se como uma alternativa para cálculos de estruturas hidráulicas, a fim de otimizar etapas de cálculo no dimensionamento de componentes hidráulicos.

Atualmente, o programa *SisCCoH* 1.1 possui 14 módulos habilitados para cálculos hidráulicos. Na continuidade do projeto *SisCCoH* pretende-se incorporar mais 15 novos módulos, conforme indicado na Figura 1.1.

Figura 1.1 - Arquitetura do Programa SisCCoH.

Conforme mostrado na Figura 1.1, os módulos habilitados na versão 1.1 são: escoamento permanente de condutos simples; escoamentos livre uniforme, crítico e variado para as seções regulares; seção de máxima eficiência; bueiros; regime de escoamento em degrau, regime Nappe Flow, regime Skimming Flow, canais com trechos distintos; e quedas singulares; bacias de dissipação por ressalto hidráulico e por enrocamento, confluência de canais e curvas em canais. Nos próximos tópicos serão apresentadas as principais funcionalidades dos módulos habilitados na versão 1.1 do *software SisCCoH*.

2 CONDUTOS FORÇADOS

2.1 Condutos Simples

2.1.1 Escoamento permanente

Ao escoar por um conduto, o líquido perde irreversivelmente energia por efeito Joule. A perda de carga pode ser calculada no *SisCCoH* utilizando o método da equação Universal (2.1) ou da equação de *Hazen-Williams* (2.2).

$$\Delta h_{eq\ universal} = \frac{8.f.Q^2}{\pi^2.\,\text{g.}\,\text{D}^5}.\,L \tag{2.1}$$

$$\Delta h_{Hazen-Williams} = 10,64. \frac{Q^{1,85}}{C^{1,85}.D^{4,87}}.L$$
(2.2)

Em que: Δh : perda de carga ao longo do percurso;

f: coeficiente de perda de carga da equação universal;

g: aceleração da gravidade em m/s²;

Q: a vazão no trecho (m³/s);

D: diâmetro do conduto (m);

L: comprimento do trecho (m)

As entradas e as variáveis a serem calculadas estão resumidas na Tabela.2.1.

Tabela.2.1 - Variáveis a serem ca	lculadas e dados	necessários.
-----------------------------------	------------------	--------------

Variáveis	Equação de Hazen-Williams	Equação Universal
	Vazão (m^{3}/s);	Vazão (m^3/s)
Velocidade e Perda	diâmetro (<i>m</i>);	Diâmetro (<i>m</i>)
de Carga Unitária	Coeficiente de perda de carga C	Aspereza relativa (mm)
		Viscosidade cinemática (m^2/s).
	Vazão (m^3/s)	Vazão ($m^{3/s}$)
Diâmetro e Perda	Velocidade (m/s)	Velocidade (m/s)
de Carga Unitária	Coeficiente de perda de carga C	Aspereza relativa (mm)
		Viscosidade cinemática (m^2/s)
	Diâmetro (<i>m</i>);	Diâmetro (m)
Vazão e Perda de	velocidade (<i>m/s</i>);	Velocidade (m/s)
Carga Unitária	Coeficiente de perda de carga C	Aspereza relativa (mm)
		Viscosidade cinemática (m^2/s)
	Diâmetro (m);	Diâmetro (m);
Vazão o Volocidado	Perda de carga unitária (<i>m/m</i>)	Perda de carga unitária (<i>m/m</i>)
vazao e velociadae	Coeficiente de perda de carga C	Aspereza relativa (mm)
	-	Viscosidade cinemática (m^2/s)
		$(\mathbf{O}, \mathbf{u}; \mathbf{u})$

(Continua...)

Variáveis	Equação de Hazen-Williams	Equação Universal
Diâmetro e Velocidade	Vazão (m); Perda de carga unitária (<i>m/m</i>) Coeficiente de perda de carga C	Vazão (m); Perda de carga unitária (<i>m/m</i>) Aspereza relativa (<i>mm</i>)
		Viscosidade cinemática (m^2/s)
Vazão e Diâmetro	Velocidade (m/s) Perda de carga unitária (<i>m/m</i>) Coeficiente de perda de carga C	Velocidade (m/s) Perda de carga unitária (<i>m/m</i>) Aspereza relativa (<i>mm</i>) Viscosidade cinemática (<i>m²/s</i>)

(Continuação)

A seguir é apresentado uma aplicação no *SisCCoH* para o cálculo de um conduto simples.

Exemplo 2.1: Cálculo de Conduto Simples

Uma adutora de 400 mm diâmetro e de 1 km de extensão fornece uma vazão de 100 l/s por meio de uma tubulação de concreto. Determine a velocidade e a perda de carga.

Acessando o menu *Condutos Forçados*, seguido por *Condutos Simples* e *Escoamentos Permanentes* pode-se digitar os dados. Os itens marcados com interrogação apresentam dicas para o cálculo.

Escoamento Permanente - Condut	tos Simples	CII Escoamento Permanente - Condutos Simples	
Dados Resultados Relatório	<u>ه</u>	Dados Resultados Relatório	
Fórmula para cálculo da p	erda de carga:	Relatório:	
 Hazen Williams Universal 	2	SisCCoH - Sistema para Cálculos de Compo Escoamento Permanente - Conduto	nentes Hidráulicos os Simples
Variáveis a serem calculad	las:	Vazão (m³/s)	0,1 ^
		Diâmetro (m)	0,4
Velocidade e Perda de Ca	irga Unitaria 🔘 Vazão e Velocidade	Coeficiente C	120
Diâmetro e Perda de Cara	ga Unitária Olametro e Velocidade	Resultados	
🔍 Vazao e Perda de Carga U	Jnitaria 🔘 Vazao e Diametro	Fórmula utilizada	Hazen-Willia
Dados necessários:		Vazão (m³/s)	0,1
Dudo necessarion		Diâmetro (m)	0,4
Vazão (m³∕s)	0,1	Coeficiente C	120
Diâmetro (m)	0,4	Velocidade (m/s)	0,7957747
Coeficiente C	120	Perda de Carga Unitária (m/m)	0,001855343
		Comprimento (m)	1000
Comandos		Perda de Carga	1,86
Calcular	Cancelar	Comandos Exportar para Excel Termina	r

Figura 2.1 - Conduto Forçado Simples em regime de escoamento permanente.

A figura anterior mostra a entrada de dados no programa. É possível selecionar as opções desejadas, digitar os valores dos dados e, em seguida, calcular as variáveis desejadas. Na aba *Resultados* são exibidos alguns dos resultados e o *Software* permite informar o comprimento do trecho para cálculo da perda de carga total que é exibido no canto inferior direito.

O relatório, apresentado a direita na Figura 2.1, exibe os resultados e uma opção para a exportação para o Excel. Para concluir, basta clicar em *Terminar* e então o programa exibirá a tela principal que contém os menus principais.

3 ESCOAMENTOS LIVRES

3.1 Máxima eficiência

A janela *Máxima Eficiência* permite a definição de uma seção ótima para canais, a fim de transportar a vazão de projeto. Uma vez definidas a rugosidade e a declividade média do canal, o cálculo da máxima eficiência considera a redução de custos de implantação pela minimização da área a ser revestida e do volume a ser escavado de material para transporte de uma vazão máxima.

É possível calcular a geometria para seções retangulares, triangulares, trapezoidais ou circulares. O *SisCCoH* utiliza a fórmula de Manning. A vazão máxima é obtida quando o perímetro molhado é mínimo, mantendo-se os valores da área, do coeficiente de Manning e da inclinação inalterados.

Foram utilizadas as relações apresentadas na Tabela 3.1 nas rotinas de cálculo do *SisCCoH*.

Seção	Geometria ótima	Profundidade Normal (y)	Área(A)
y eby	$\alpha = 60^{\circ}$ $b = \frac{2}{\sqrt{3}} y$	$0,968 \left[\frac{Qn}{I^{1/2}}\right]^{3/8}$	$1,622 \left[\frac{Qn}{I^{1/2}}\right]^{3/4}$
B y y	B = 2 y	$0,917 \left[\frac{Qn}{I^{1/2}}\right]^{3/8}$	$1,682 \left[\frac{Qn}{I^{1/2}}\right]^{3/4}$
y ya	$\alpha = 45^{\circ}$	$1,297 \left[\frac{Qn}{I^{1/2}}\right]^{3/8}$	$1,682 \left[\frac{Qn}{I^{1/2}}\right]^{3/4}$
	D=2 y	$1,00\left[\frac{Qn}{I^{1/2}}\right]^{3/8}$	$1,583 \left[\frac{Qn}{I^{1/2}}\right]^{3/4}$

Tabela 3.1 - Geometria, profundidade normal e área de seções típicas regulares. Adaptado de Baptista e Lara (2012).

A Tabela 3.1 apresenta os aspectos da geometria para cada tipo de seção, além da profundidade normal e a área para uma verificação preliminar. Naturalmente, algumas condições de contorno como localização e elementos do projeto podem inviabilizar a sua aplicação prática.

A seguir é apresentado um exemplo com o tipo de seção circular.

Exemplo 3.1: Cálculo de seção triangular em condição de máxima eficiência

Determine os parâmetros hidráulicos de uma seção circular, na condição de máxima eficiência, em que a vazão é 5 m³/s, a declividade longitudinal igual a 0,005 m/m e a seção é revestida com concreto pré-moldado.

Escoamentos Livres - Máxima Eficiência		Car Escoamentos Livres - Máxima Eficiência	
Dados Resultados Quantitativos	Relatório	Dados Resultados Quantitativos	Relatório
Tipo de seção:	Triangular	Parâmetros Hidráulicos :	
		Área Molhada (m²)	1,758
Trapezoidal	Circular	Coeficiente de Manning	0,015
2.00		Declividade (m/m)	0,005
Dados necessarios:		Largura superior (m)	2,652
	1.000	Número de Froude	1,115
Vazão (m³/s)	5	Profundidade do Fluxo (m)	1,326
		Vazão (m³/s)	5
Coeficiente de Manning	0,015	Velocidade (m/s)	2,8442
Declividade (m/m)	0,005		
Comandos Calcular	Cancelar	Comandos	
Ok		Quantitativos de projeto F	Relatório

Figura 3.1 - Dados e Resultados para condição de Máxima Eficiência

Acessando o menu *Escoamentos Livres* e em seguida *Máxima Eficiência*, foi calculado os parâmetros hidráulicos da seção triangular. A esquerda é exibida a aba da entrada de dados e a direita a dos resultados. O *SisCCoH* calcula apenas quantitativos de projetos para seções retangulares, trapezoidais e triangulares. A Figura 3.2 exibe os dados de quantitativos de projeto e o Relatório que resume os dados de entrada, resultados e os quantitativos de projeto.

Dados Resultados Quantitativos Re	latório	Dados Resultados Quantitativos Re	latorio
Quantitativos de Projeto por met	ro:	SisCCoH - Sistema para Cálculos de Escoamentos Livres - Seções I	Componentes Hidráulicos Regulares - Uniforme
		Número de Froude	1,115 *
Área Superficial (m²/m)	2,652	Profundidade do Fluxo (m)	1,326
		Vazão (m³/s)	5
Área de Revestimento (m²/m)	3,7505	Velocidade (m/s)	2,8442
		Quantitativos de	Projeto
Volume de Corte (m³/m)	1,7583	Área Superficial (m²/m)	2,652
		Área de Revestimento (m²/m)	3,7505
		Volume de Corte (m³/m)	1,7583
Comandos Relatório	Teminar	Comandos Exportar para Excel	Terminar

Figura 3.2 - Quantitativos e Relatório para condição de Máxima Eficiência

A área superficial calculada foi a interna equivalente a largura superficial em (m²/m), a área do revestimento foi considerada igual ao perímetro molhado (m²/m), desconsiderando a borda livre. E o volume de corte considerou a área molhada da seção (m³/m) sem considerar a espessura do revestimento, nem eventual corte a ser efetuado, como, por exemplo, aquele a ser executado por limitação do ângulo da lâmina da escavadeira durante o corte ou de áreas extras necessárias para a execução da fôrma.

3.2 Seções Regulares

3.2.1 Uniforme

No escoamento uniforme as velocidades e a profundidade se mantêm ao longo do canal e são retilíneas e paralelas ao fundo.

A janela *Seções Regulares* pode ser acessada no menu *Escoamentos Livres*, *Seções Regulares* e em seguida em *Uniforme*. Neste módulo, seleciona-se a variável desejada (profundidade, a rugosidade de Manning, a vazão ou a declividade) utilizandose outros dados para o regime de escoamento uniforme.

Ao acessar o módulo, na aba *Dados* será requisitado o tipo de seção e a variável a ser calculada. Caso seja dada a relação máxima Y/D da seção, opcionalmente, pode ser digitada o valor da relação selecionando o campo na região *Parâmetro opcional para seção circular*, depois de selecionada a geometria do tipo circular na região *Tipo de seção*. Para cada formato geométrico da seção (retangular, triangular, trapezoidal ou retangular) e cada variável a ser calculada, diferentes dados são requeridos. A Tabela 3.2 indica os elementos necessários para cada situação:

Variáveis	Seção Retangular	Seção Triangular	Seção Trapezoidal	Seção Circular
Profundidade (m)	Vazão Coeficiente de Manning; Declividade; Largura.	Vazão; Coeficiente de Manning; Declividade; Inclinação lateral.	Vazão; Coeficiente de Manning; Declividade; Largura inferior; Inclinação Lateral.	Vazão; Diâmetro; Aspereza relativa; Viscosidade cinemática.
Coeficiente de Manning	Vazão; Profundidade; Declividade; Largura.	Vazão; Profundidade; Declividade; Inclinação lateral.	Vazão; Profundidade; Declividade; Largura inferior; Inclinação lateral.	Vazão; Diâmetro; Profundidade; Declividade.
Vazão (m³/s)	Profundidade; Coeficiente de Manning; Declividade; Largura.	Profundidade; Coeficiente de Manning; Declividade; Inclinação lateral.	Profundidade; Coeficiente de Manning; Declividade; Largura inferior; Inclinação lateral.	Profundidade; Diâmetro; Coeficiente de Manning; Declividade.
Declividade (m/m)	Vazão; Profundidade; Coeficiente de Manning; Largura.	Vazão; Profundidade; Coeficiente de Manning; Inclinação lateral.	Vazão; Profundidade; Coeficiente de Manning; Largura inferior; Inclinação lateral.	Vazão; Diâmetro; Profundidade; Coeficiente de Manning.

Tabela 3.2 - Dados necessários

O *SisCCoH* calcula a área molhada, a largura superior, o perímetro molhado, o raio hidráulico, a vazão (utilizando a fórmula de Manning, apresentada na equação (3.1), a profundidade hidráulica (razão entre área molhada e largura superior), a velocidade, pela equação da continuidade, e o número de Froude (Fr). A equação da continuidade é apresentada na equação (3.2) e a do número de Froude na (3.3).

$$Q = \frac{1}{n} A R_h^{2/3} \sqrt{I}$$
(3.1)

$$Q = U.A \tag{3.2}$$

$$Fr = \frac{U}{\sqrt{g.A}}$$
(3.3)

Em que: *U*: velocidade (m/s);

Q: a vazão (m³/s);

A: área da seção (m);

Fr: número de Froude

g: aceleração da gravidade (m/s²)

Ressalta-se que o método numérico utilizado para a solução da equação de Manning para cálculo da profundidade de escoamento é o de Newton- Raphson.

As abas *Resultados* e *Relatórios* apresentam os valores calculados. Assim, como em outros módulos, o relatório pode ser exportado para o Excel. Os valores de Froude menores que 1 indicam o regime de escoamento subcrítico; os iguais a 1, o regime de escoamento critico; e os maiores que 1, o escoamento supercrítico.

Exemplo 3.2: Cálculo de seção retangular em escoamento livre uniforme

Dado um canal retangular com revestimento em concreto que possui declividade de 0,06%, largura de 1 metro e profundidade da linha de água igual a 5 m, calcule a vazão, a velocidade e o número de Froude, assumindo uma borda livre de 20%.

Acessando a opção *Escoamento Livre* e preenchendo as variáveis de entrada na aba *Dados* pode-se calcular os parâmetros hidráulicos. A Figura 3.3apresenta os dados de entrada e os resultados obtidos pelo *SisCCoH*:

IF Escoamento Livre - Seções Regulares	- Uniforme	🕼 Escoamento Livre - Seções Regulares - Uniforme	
Dados <u>Resultados Quantitativo</u> Tipo de seção : Retangular O Triangular O Trapezoidal O Circular	s Relatório Variável a ser calculada : Profundidade Coeficiente de Manning Vazão Declividade	Dados Resultados Quantitativos Relató Parâmetros Hidráulicos :	rio
Parâmetro opcional para ser Relação Máxima Y/D Dados necessários:	ção circular :	Área molhada (m²) Coeficiente de Manning Declividade (m/m) Largura superficial (m)	5 0,015 0,0006 1 0,139
Profundidade (m) Coeficiente de Manning Declividade (m/m) Largura (m)	5 0,015 0,0006 1	Vumero de Froude Profundidade do fluxo (m) Vazão (m ³ /s) Velocidade (m/s)	0,138 5 4,8269 0,965
Comandos Calcular	Cancelar Ok	Comandos Quantitativos de projeto Relatório	Teminar

Figura 3.3 – Dados e Resultados de Escoamento permanente livre uniforme

Outra utilidade do *SisCCoH* é o cálculo de quantitativos. Em *Quantitativos*, exibido na Figura 3.4, o usuário pode informar a borda livre utilizada e o programa calcula, por metro longitudinal de canal, a profundidade interna, a área superficial e o volume de corte.

Dados Resultados Quantitativos Relatório		Dados Resultados Quantitativos Re	latório
Dado necessário:		Relatório:	
Borda livre (m) 1	Calcular	SisCCoH - Sistema para Cálculos d Escoamento Livre - Seções	e Componentes Hidráulicos Regulares - Uniforme
Quantitativos de Projeto por metro:		Dados de Er	itrada 🔄 📩
		Profundidade (m)	5
		Coeficiente de Manning	0,015
		Declividade (m/m)	0,0006
Profundidade (m)	6	Largura (m)	1
Área Superficial (m²/m)	1	Resultad	os
Area de Revestimento (m ⁴ /m)	13	Área molhada (m²)	5
Volume de Corte (m³/m)	6	Coeficiente de Manning	0,015
		Declividade (m/m)	0,0006
		Largura superficial (m)	1
		Número de Froude	0,138
		Profundidade do fluxo (m)	5 🛫
Comandos Relatório Terminar]	Comandos	Terminar

Figura 3.4 - *Quantitativos* e *Relatório* de seção retangular sob regime de escoamento permanente livre uniforme

Em uma abordagem mais simplificada, os resultados dos quantitativos não consideram a espessura do revestimento, bem como no volume de corte, a área lateral necessária de corte para execução dos trabalhos de compactação, preparo do terreno, posicionamento das formas (quando utilizado o revestimento de concreto) e a espessura do revestimento.

3.2.2 Crítico

O escoamento crítico é aquele que possui o número de Froude igual a 1 e a energia crítica (E_c) pode ser calculada pela equação (3.4):

$$Ec = \frac{3}{2} y_c \tag{3.4}$$

Em que:

y_c: Profundidade crítica (m);

Ec: Energia crítica (m);

No aplicativo, essa opção pode ser acessada no menu *Escoamentos Livres*, *Seções Regulares*, *Crítico*. A interface solicita o tipo de seção e possibilita o cálculo da profundidade ou da vazão. Em seguida, o usuário deve informar os dados da geometria e uma das variáveis, profundidade ou vazão.

Para as seções retangulares, obtém-se a profundidade crítica (y_c), pela equação 3.4, a área molhada, a velocidade – pela equação (3.2) – a profundidade crítica (y_c), calculada pela equação (3.5), o número Froude da equação (3.3) e Energia Crítica (E_c), calculada pela equação (3.6):

$$y_{c} = \sqrt[3]{\frac{Q^{2}}{g.B^{2}}}$$

$$E_{c} = y_{c} + \frac{U^{2}}{2.g}$$
(3.5)
(3.6)

Em que:

 y_c : Profundidade crítica (m);

B é a largura superficial (m);

 E_c : Energia crítica (m);

Para as seções triangulares incorpora-se a variável inclinação lateral, e a profundidade crítica é calculada pela equação (3.7):

$$y_c = \sqrt[5]{\frac{2.Q^2}{g.z^2}}$$
(3.7)

Em que: z: a inclinação lateral

Os cálculos para outras seções são análogos ao cálculo da profundidade crítica, mantendo-se a relação da equação 3.7 a seguir.

$$\frac{Q^2}{g} = \frac{A^3}{B} \tag{3.8}$$

Após clicar em OK na interface, os resultados são apresentados na Aba *Resultados* e o programa fica à disposição, caso o usuário queira imprimir o relatório ou terminar.

Exemplo 3.3: Cálculo da profundidade crítica em escoamento livre permanente crítico.

Dado um canal trapezoidal com inclinações laterais de 1:1 e largura inferior unitária calcule a profundidade crítica quando a vazão é de 14 m/s.

Após a seleção do tipo de seção, escolhendo-se a variável profundidade e informados os dados necessários, é possível obter os parâmetros hidráulicos desejados, conforme exibido na Figura 3.5:

Dados Resultados Relatório		Dados Resultados Relatório	
Tipo de seção:		Parâmetros Hidráulicos :	
 Retangular Trapezoidal 	 Triangular Circular 	Área Molhada (m²) Inclinação lateral (h/v)	4,42
Variável a ser calculada: Profundidade	 Vazão 	Largura superficial (m) Largura do fundo (m) Número de Froude	4,322 1 1
Dados necessários:		Profundidade do fluxo (m) Vazão (m³/s) Velocidade (m/s)	1,661 14 3,167
Vazão (m³/s) Largura inferior (m) Inclinação lateral (h/v)	14 1 1	Energia específica	2,172
Comandos Calcular	Cancelar	Comandos Relatório Terr	ninar

Figura 3.5 - Dados e Resultados do Regime Crítico

Logo, conforme apresentado a direita na aba *Resultados* da Figura 3.5, a profundidade crítica calculada foi de 1,661m. Verifica-se, também, que o *SisCCoH*

calcula outros parâmetros hidráulicos como área molhada, número de Froude, velocidade e energia específica.

3.2.3 Variado

3.2.3.1 Gradualmente

Um escoamento gradualmente variado é aquele que apresenta variação das características do fluxo no espaço de forma gradual e a inclinação do canal e da superfície livre diferem entre si. Este tipo de escoamento geralmente ocorre em trechos de transições verticais e horizontais e/ou quando a declividade não permanece constante.

As hipóteses para o cálculo da equação diferencial do escoamento gradualmente variado consideram a geometria prismática, a distribuição constante da velocidade e a pressão hidrostática ao longo da seção. As equações diferenciais relevantes para o cálculo, assumindo essas hipóteses, são as de variação da energia específica ao longo do canal, e da altura pelas equações (3.9) e (3.10), respectivamente, e a variação da altura da linha d'água ao longo do canal (3.11).

$$\frac{dE}{dx} = I - J \tag{3.9}$$

$$\frac{dE}{dv} = 1 - Fr^2 \tag{3.10}$$

$$\frac{dy}{dx} = \frac{I - J}{1 - Fr^2} \tag{3.11}$$

Em que: I é a declividade do fundo do canal em m/m;

J é a declividade da energia total em m/m.

Para a resolução do escoamento gradualmente variado, o *SisCCoH* utiliza os métodos numéricos de Newton-Raphson e da Bisseção. Primeiramente, o programa itera até 5000 vezes, possuindo como critério de parada a precisão de 10⁻⁶, utilizando uma vazão de teste para verificar se a precisão foi alcançada. Se a diferença entre uma vazão e a de teste for superior a 0,01 é aplicado o método da Bisseção.

O método de Newton-Raphson, quando converge, é mais rápido que o método da Bisseção para encontrar as raízes, no entanto, ele nem sempre converge e requer o cálculo da derivada da função. Por outro lado, o método da bisseção possui uma convergência mais lenta, mas encontra pelo menos uma raiz, desde que ela exista dentro do intervalo considerado. A associação dos dois métodos foi utilizada no programa *SisCCoH*.

Dada uma vazão de escoamento, a rugosidade de Manning, a largura, a profundidade inicial, e o intervalo de cálculo em função da variação da profundidade, é possível calcular as coordenadas e exibir o perfil da linha d'água no programa. Para uma maior precisão, recomenda-se utilizar o intervalo igual a 0,01.

O *software* verifica a declividade, se ela é inferior, igual ou superior à declividade crítica para definir o tipo da linha d'água. É considerado no *SisCCoH* os canais com: declividade fraca, quando a declividade do canal é menor que a crítica; declividade crítica, quando as declividades do canal e crítica são iguais; e a declividade forte, quando a declividade do fundo do canal é maior que a crítica.

Os parâmetros de entrada são processados pelo programa e, inicialmente, é verificado se um ou mais dados são menores ou iguais a zero. Se verificado, a seguinte mensagem é exibida para o usuário: "Dados incompatíveis para a resolução do problema!" e "Entrada incompleta de dados!".

A Tabela 3.3 indica os nomes das curvas comparando-se a profundidade normal (y_n) , a crítica (y_c) e a da linha d'água (y_i) .

Comparação y _n e y _c	Tipo de declividade	Comparação Yi e Yn	Tipo de curva
		$y_i > y_n$	M1
$y_n > y_c$	Declividade Fraca	$y_i > y_c \ e \ y_i < yn$	M2
		$y_i < y_c$	M3
		$y_i > y_c$	C1
$y_n = y_c$	Declividade Crítica	$y_i < y_c$	C3
		y _i >y _c	S 1
N /N	Declividade Forte	$y_i < y_c \ e \ y_i > y_n$	S2
yn~yc	Declivitate l'olle	$y_i < y_c$	S 3

Tabela 3.3 - Tabela comparativa das curvas

O exemplo 3.4 apresenta uma aplicação do escoamento gradualmente variado.

Exemplo 3.4 Cálculo da linha d'água em escoamento gradualmente variado

Considerando uma descarga de 8 m³/s, coeficiente de Manning igual a 0,013, declividade de 1%, largura e profundidade inicial no canal igual a 1 m e intervalo de cálculo de 0,1 m, calcule e mostre a linha d'água.

Acessando o menu *Escoamentos Livres*, *Seções Regulares*, *Variado* e é possível abrir a janela para cálculo no *SisCCoH*. A Figura 3.6 e a Figura 3.7 mostram os resultados de alguns pontos do eixo x (considerando o intervalo de 0,1 m na profundidade do perfil da linha d'água) e o perfil da linha d'água.

The design of the second secon	5110		Daultadaa	Visuanzação	Relatorio	
lipo de seção:			Resultados:			
 Retangular Trapezoidal 	Trian Circ	ngular ular	Distância (m)	Profundidade (m)	Velocidade (m/s)	Froude
			0	1	8	2,554
Dados necessários:		31	14,761	1,1	7,273	2,214
			28,908	1,2	6,667	1,943
Vazão (m³/s)	8		42,474	1,3	6,154	1,723
Coeficiente de Manning	0,013	2	55,463	1,4	5,714	1,542
Declividade (m/m)	0.01		67,845	1,5	5,333	1,39
L	1		79,517	1,6	5	1,262
Largura (m)	1		90,22	1,7	4,706	1,152
Profundidade Inicial (m)	1		99,191	1,8	4,444	1,058
Intervalo de Cálculo - ΔY (m)	0,1		102,575	1,86855	4,281	1
Comandos Calcular Ok	Cancelar		Comandos Visual	izar Ro	elatório	Teminar

Figura 3.6 - Dados e Resultados em Escoamento Gradualmente Variado.

A Figura 3.7 exibe o perfil da linha d'água calculado com o intervalo da profundidade de 0,1 m e o relatório final.

Figura 3.7 - Visualização do Perfil da linha d'água e relatório

Verifica-se no *SisCCoH* a exibição da linha d'água em azul, da profundidade crítica em vermelho e da profundidade normal em verde. Abaixo do perfil da linha d'água o programa também indica o tipo de curva, que foi classificada como a curva M3 neste exemplo.

3.2.3.2 Bruscamente

O escoamento bruscamente variado é caracterizado pela mudança rápida do regime de escoamento entre duas seções de controle. Neste tipo de escoamento não é válida a hipótese da distribuição hidrostática de pressões e as diferenças de velocidades implicam em variações significativas dos coeficientes de Coriolis (α) e de Boussinesq (β). O escoamento é mais influenciado pelas condições de contorno, como a geometria do canal, do que a rugosidade do canal. Neste tipo de escoamento, verifica-se a formação de vórtices, correntes secundárias e zonas de estagnação.

O ressalto hidráulico, um exemplo de escoamento bruscamente variado, corresponde a transição do regime torrencial ao fluvial em uma certa distância horizontal e pode ser calculado e classificado pelo *SisCCoH*. Outras estruturas hidráulicas como escoamento em degraus, canais em transição são também dimensionados pelo *SisCCoH*, mas foram abordadas pelo *software* nos menus de *estruturas hidráulicas* e *singularidades*.

O dimensionamento do ressalto pode ser acessado pelo seguinte caminho: *Escoamentos Livres*; *Seções Regulares*; *Bruscamente*; *Ressalto Hidráulico*; e, por fim, *Caracterização*. Na aba *Dados* devem ser preenchidos os parâmetros de entrada e, em seguida, deve-se selecionar a profundidade conjugada, a qual se deseja calcular (a montante ou a jusante). Os resultados fornecidos são a profundidade conjugada desejada, a perda de carga, o comprimento do ressalto, a profundidade crítica, as velocidades e o número de Froude nas seções conjugadas.

A área a montante do ressalto é calculada utilizando a profundidade a montante, e outros dados de acordo com o tipo da seção. A velocidade a montante e o número de Froude são calculados pelas equações (3.2) e (3.3), respectivamente. Após calcular o número de Froude o *SisCCoH* apresenta a classificação do ressalto de acordo com o valor do Froude a montante, conforme apresentado na Tabela 3.4.

Tabela 3.4 - Classificação do Ressalto Hidráulico

Froude a montante	Classificação
$1,2 \le Fr_1 < 1,7$	Falso Ressalto (onduloso)
$1,7 \le Fr_1 < 2,5$	Pré-ressalto
2,5≤Fr ₁ <4,5	Ressalto Oscilante (fraco)
$4,5 \le Fr_1 < 10$	Ressalto Verdadeiro (estacionário)
$1,7 \leq Fr_1 < 2,5$	Grande Turbulência (forte)

Para a seção retangular, quando informada a profundidade a jusante pelo usuário, ela é utilizada para calcular a área do ressalto. A velocidade, o número de Froude e a profundidade crítica são calculados por equações apresentadas anteriormente.

A profundidade conjugada é calculada pela equação (3.12):

$$y_2 = \frac{y_1}{2} \left(\sqrt{(1 + 8 \operatorname{Fr}^2)} \right) - 1$$
 (3.12)

Em que: y₂: profundidade conjugada a jusante (m);

y1: profundidade conjugada a montante (m);

O comprimento do ressalto para as seções retangulares com declividade nula é calculado pela equação (3.13)(3.13).

$$Lr = 6.9 (y_2 - y_1) \tag{3.13}$$

Em que: *Lr*: comprimento do ressalto.

A perda de carga é calculada em função das profundidades conjugadas através da equação (3.14), válida para todas as geometrias de seções:

$$\Delta h = \frac{(y_2 - y_1)^3}{4 y_1 y_2} \tag{3.14}$$

Para o caso da seção retangular com fundo inclinado, no cálculo da profundidade conjugada foi utilizada a razão entre profundidade a jusante e a montante e comparadas com o valor do Froude a montante, utilizando o ábaco de profundidades conjugadas em ressalto em canais inclinados (Figura 3.8), proposto por Chow (1959), em seus estudos sobre ressalto hidráulico e dissipação de energia.

Figura 3.8 - Profundidade conjugada do ressalto hidráulico em canais inclinados.

No *SisCCoH*, a profundidade é calculada para inclinações entre zero e 10%. O ábaco fornece curvas parametrizadas a cada 5%, e para valores intermediários, eles são interpolados com o valor da declividade indicada e as discretizadas. Já para o cálculo do comprimento do ressalto em canais inclinados é utilizado o ábaco apresentado na Figura 3.9, também desenvolvido por Chow (1959).

Figura 3.9 - Comprimento dos ressaltos em canais inclinados.

No caso da seção trapezoidal e triangular, são calculados a área da seção à montante de teste e outros parâmetros de teste como a velocidade, o número de Froude a montante, assumindo a seção como aproximadamente horizontal e retangular. A profundidade conjugada de teste ($y_{2,teste}$) é calculada conforme a equação (3.12):

A profundidade conjugada de teste é utilizada para determinar o valor final do intervalo para cálculo das raízes considerando a seção retangular. O intervalo considerado para cálculo das raízes foi de $y_1+0,1$ e $3y_{2,teste}$. Adotando um valor inicial igual a 10^{-6} , valor final de 99,9% da altura conjugada a jusante e, considerando uma precisão de 10^{-5} , o *software* calcula raízes para a profundidade conjugada real utilizando a combinação dos métodos de Newton-Raphson e Bisseção com máximo de 100 iterações. Nesse cálculo é considerado o tipo da seção trapezoidal, a inclinação das paredes do canal, a base inferior e uma equação auxiliar (Eq) em que utiliza a altura acima do centro de gravidade da seção (ho), utilizando a vazão e a área da seção a montante. Essa equação é apresentada na equação (3.15):

$$Eq = \frac{Q^2}{gA} + A ho$$
Eq: equação auxiliar
(3.15)

Em que: Eq: equ

ho: altura acima do centro de gravidade (m);

Para o caso da seção circular, o *SisCCoH* utiliza as seguintes equações simplificadas por French *apud* Baptista & Lara (2012) para o cálculo do número de Froude, profundidade conjugada e profundidade crítica:

$$Fr_1 = \left(\frac{y_c}{y_1}\right)^{1,93}$$
 (3.16)

$$y_2 = \frac{y_c^2}{y_1}$$
, para Fr < 1,7 (3.17)

$$y_2 = \frac{y_c^{1,8}}{y_1^{0,73}}$$
, para Fr $\ge 1,7$ (3.18)

$$y_c = \frac{1.01}{D^{0.264}} \left(\frac{Q\sqrt{\alpha}}{\sqrt{g}}\right)^{0.506}$$
(3.19)

Em que: α : Coeficiente de *Coriolis*

As equações (3.17) e (3.18) diferem quanto sua aplicação, sendo válidas para faixas de diferentes valores do número de Froude, indicados acima. Além disso, para o cálculo da profundidade crítica, a equação (3.19) é válida para a relação 0,2<y/D<0,85.

O comprimento do ressalto para seções não retangulares e não inclinados é considerado, para fins práticos, equivalente ao de seções retangulares, apresentado anteriormente na equação (3.13).

As notificações do *SisCCoH* são relacionadas a entrada de dados inadequada, posições relativas da altura do perfil da linha d'água em relação ao diâmetro do canal, considerações sobre valores de entrada e as hipóteses assumidas. Essas notificações são descritas a seguir:

- "Entrada incompleta de dados!": ocorre quando o usuário não preencheu todos os dados de entrada necessários para o cálculo;
- "Dados incompatíveis para a resolução do problema!": se pelo menos um dos valores de vazão, largura, profundidade conjugada (montante ou a jusante) for digitado com um valor menor ou igual a zero; e se, após o cálculo do ressalto, o comprimento calculado pelo programa for menor ou igual a zero;
- "O cálculo é válido para a faixa de Fr₁ entre 1.5 e 15.3!" Neste caso, a mensagem é exibida para o usuário quando a declividade do canal é maior que 0,05 m/m, dada a leitura do ábaco de ressalto em seções inclinadas;

- "O cálculo é válido para a faixa de Fr₁ entre 1.5 e 18!". Essa mensagem é exibida caso o usuário informe uma declividade menor que 0,05 m/m, para seções inclinadas, conforme apresentado no ábaco de Chow (1959);
- "O cálculo é válido para a faixa de y₁/D entre 0.02 e 0.85!". Informa ao usuário o intervalo da razão entre a profundidade normal e o diâmetro do canal circular;
- "Declividade deve ser menor que 10%." O SisCCoH considera declividades menores que 0,1 m/m, a fim de considerar uma distribuição hidrostática de pressões;
- "Não foi possível completar o cálculo solicitado, uma vez que a profundidade a montante (y₁) é maior que a profundidade crítica (y_c), impedindo assim, a formação do ressalto hidráulico." Em tal caso, o escoamento é subcrítico e não há transição do regime fluvial para torrencial que possibilite a formação do ressalto;
- "Não foi possível completar o cálculo solicitado, uma vez que a profundidade a montante (y₁) é maior que o diâmetro(D)". Nesta situação, a seção funciona como orifício e deve ser calculada no módulo de bueiros em estruturas hidráulicas;
- "Não foi possível completar o cálculo solicitado, uma vez que a profundidade a jusante (y₂) é maior que o diâmetro (D)" Neste caso, indica ao usuário que o canal funciona parcialmente como conduto livre, mas ao longo do sentido de formação do ressalto, a sua altura dentro do canal fica limitado ao diâmetro do canal;
- "Não foi possível completar o cálculo solicitado, uma vez que a profundidade a jusante (y₂) é menor que a profundidade crítica (y_c), impedindo assim, a formação do ressalto hidráulico";
- "Assegure-se que a profundidade inicial permite a definição de uma curva de remanso." Essa mensagem indica que a profundidade normal é menor ou igual a crítica.

Exemplo 3.4: Caracterização do ressalto hidráulico

Dada uma vazão de 3m³/s, um canal retangular de largura unitária e declividade do canal igual a 1% com profundidade a montante de 0,25, calcule a profundidade a jusante, a perda de carga, a profundidade crítica, e, para as seções conjugadas, as velocidades e o número de Froude.

A Figura 3.10 mostra a entrada de dados para a resolução deste cálculo e os resultados obtidos pelo programa:

# Escoamentos Livres - Ressalto Hidráulico - O De desentos Livres - Ressalto Hidráulico - O	Caracterização	Escoamentos Livres - Ressalto Hidráulico - Caracterização	
 ados Resultados Visualização Re Tipo de seção: Retangular O Triangular 	latório Variável desejada: ☑ I ≠ 0	Dados Resultados Visualização Relatório Parâmetros Hidráulicos:	
🔊 Trapezoidal 🛛 🔊 Circular	 Profundidade montante Y1 Profundidade jusante Y2 	Profundidade jusante Y2 (m) Perda de carga (m)	2,59
Dados necessários:		Comprimento do ressalto (m) Velocidade a montante (m/s)	15,44
Vazão (m³/s)	3	Velocidade a jusante (m/s)	1,16
(acco (,)	1	Núm. de Froude a montante	7,66
Largura (m)		Núm. de Froude a jusante	0,23
Declividade (m/m) Profundidade montante Y1 (m)	0,25	Profundidade critica (m)	
Comandos Calcular	Cancelar	Comandos Visualizar Relatório	Terminar

Figura 3.10 - Dados e Resultados do ressalto hidráulico

A Figura 3.11 ilustra um esquema com as variáveis calculadas e a aba com o relatório resumo dos dados de entrada e resultados.

🕼 Escoamentos Livres - Ressalto Hidráulico - Caracterização	Escoamentos Livres - Ressalto Hidráulico - Caracterizaç	ão 🖂 🔤 🔤 📈
Dados Resultados Visualização Relatório	Dados Resultados Visualização Relatório	
Esquema das condições hidráulicas do ressalto hidráulico:	Relatório:	
Y1 (m) 0,25 U1 (m/s) 12 Fr1 7,66 Y2 (m) 2,59 U2 (m/s) 1,16 Fr2 0,23	SisCCoH - Sistema para Cálculos de Cor Escoamentos Livres - Ressalto Hidráu	nponentes Hidráulicos Ilico - Caracterização
Δ n (m) 4,95 Lr (m) 15,44	Profundidade montante Y1 (m)	0,25 *
Ressalto verdadeiro (Estacionário)	Resultados	
×	Profundidade jusante Y2 (m)	2,59
	Perda de carga (m)	4,95
	Comprimento do ressalto (m)	15,44
28	Velocidade a montante (m/s)	12
	Velocidade a jusante (m/s)	1,16
	Núm. de Froude a montante	7,66
vit a La v	Núm. de Froude a jusante	0,23
	Profundidade crítica (m)	0,97
		*
Comandos Relatório Terminar	Comandos Exportar para Excel Ter	minar

Figura 3.11 - Visualização dos resultados e Relatório

3.2.4 Canais em Enrocamento

Em que:

Neste dimensionamento é verificado o diâmetro médio das pedras do enrocamento, calculado o coeficiente de Manning para um D_{50} adotado e a espessura do enrocamento. A formulação é válida apenas para declividade de 0,01 a 0,45 m/m e com D_{50} e entre 0,01 a 0,33. A vazão especifica de projeto (q_d)

$$q_{d} = \frac{Q}{Binf} * fs$$
(3.20)

$$q_{d}: vazão específica (m3/s.m)$$

Binf: largura inferior (m)

fs: coeficiente de majoração, adotado igual a 1,35

O *SisCCoH* calcula o D_{50} com base na metodologia proposta por Abt *et al* (2008), em função da declividade do canal, conforme apresentado nas equações (3.21) e (3.22). Caso a declividade esteja situada entre 0,10 e 0,20, o programa *SisCCoH* adota, conservadoramente, o maior valor obtido.

$$D_{50} = 50.74 * I^{0,43} * \frac{q_d^{0,56}}{100} , para \ 0.01 \le I < 0.1$$
(3.21)

$$D_{50} = 97.82 * Cu^{0,7} * I^{0,7} * \frac{q^{0,68}}{100}$$
, para $0.2 \le I \le 0.45$ (3.22)

Em que:D_{50}: Diâmetro do tamanho médio das pedras (m)Cu: Coeficiente de uniformidade

O cálculo do coeficiente de Manning associado ao D_{50} utiliza as equações seguintes - (3.23) ou (3.24), propostas por Abt *et al.* (1987a). Caso a declividade esteja entre 0,0281m/m e 0,2 o *software* escolhe o maior coeficiente de Manning.

 $n = 0.029 (1000.i.d50_{Adotado})^{0.147}, para \ 0.01 \le i < 0.0281$ (3.23)

 $n = 0.0273 (1000.i.d50_{Adotado})^{0.159}$, para $0.2 \le i \le 0.451$ (3.24)

Em que:D50: Diâmetro do tamanho médio das pedras (m)Cu:Coeficiente de uniformidade

Por sua vez, a metodologia assumida para os cálculos do diâmetro mínimo (D_0), do diâmetro máximo (D_{100}) e da espessura da camada foi a recomendada por Pinheiro (2006) em que a espessura do enrocamento é maior ou igual a 1,5 vezes o D_{50} , ou 2 vezes o D_{50} .

Exemplo 3.5: Cálculo de um canal em enrocamento

Para uma vazão de projeto de 2,5 m³/s, uma seção trapezoidal em enrocamento com inclinação lateral de 2:1, largura inferior de 1,5 m, declividade longitudinal de 2% e Cu de 2,12 obtenha o diâmetro médio do enrocamento (D_{50}), o Manning associado ao D_{50} adotado, a profundidade normal, velocidade do escoamento e espessura do enrocamento.

ados Resultados Relatório		Dados Resultados Relatório		
Referência As metodologias adotadas para a formulação dos pedras do enrocamento (DSO) foram preconizadá (1987b), Abt e Johnson (1991) e Abt et al. (2008). cálculo do coeficiente de Manning associado ao I também, por Abt et al. (1987a). Por sua vez, a me do diámetro mínimo (DO), do diámetro máximo (precemento fei a recomendad por plineiro (J)	cálculos do diâmetro médio das s por Abt et al. (1987a), Abt et al. A metodologia adotada para o Só do enrocamento foi preconizada, todologia assumida para os cálculos 0100) e da espessura da camada de not	Definição do D50 (m) Defi D ₅₀ Calculado D ₅₀ Adotado 0,149 0,15 0k 0,1	nição do D0 e D1 alculado D ₁₀₀ (0,238 94 0,238 Adotado D ₁₀₀ , 0,25	00 (m) alculado Adotado Calcular
enfocamento for a recomentada por Primeiro (2	00,	Largura Inferior - b (m)	(m)	1,5
Dados Necessários	Y	Coeficiente de Manning Associado	ao D50 - n	0.0325
	2.5	Profundidade Normal - y (m)		0,488
vazao de Projeto - Qp (m/s)	1.5	Velocidade de Escoamento - U (m/s	5)	2,069
Largura Inferior - b (m)	1,5	Espessura do Enrocamento (1.5*D	₁₀₀) - e _{enroc} (m)	0,375
Inclinação Lateral - Z (h/v)	2	Espessura do Enrocamento (2*D ₅₀) - e _{enroc} (m)	0,3
Declividade - I (m/m) Coeficiente de Uniformidade - C _u	0,02 2,12	- B	Enrocamento	X.
Comandos	Cancelar	у́-	1	,
Ok]	Comandos Relatório	Teminar	

Figura 3.12 - Dados e Resultados de Canais em enrocamento.

A Figura 3.12 - *Dados* e *Resultados* de Canais em enrocamento.Figura 3.12 exibe a aba da entrada de dados e a direita os resultados fornecidos. É possível fornecer os valores de D_{50} , d_0 e D_{100} , mediante a disponibilidade real do material do enrocamento. Em *Relatório* são resultados os resultados e dados de entrada, permitindo ao usuário exportar para o Excel.

No próximo item serão explicitados os dimensionamentos de algumas estruturas hidráulicas, como bueiros, canais em degraus e bacias de dissipação calculadas pelo *SisCCoH*.

4 ESTRUTURAS HIDRÁULICAS

4.1 Bueiros

No dimensionamento de bueiros no *SisCCoH*, três tipos de funcionamento da estrutura são considerados: escoamento em canal livre, orifício e conduto forçado.

No caso de bueiros funcionando como canal, tanto o emboque quanto o desemboque não estão submersos. A declividade do canal é comparada à declividade crítica e o controle ocorre a montante se o regime verificado é torrencial e a jusante se o regime é fluvial.

$$I_{c,tubular} = 32,82 * \frac{n^2}{\sqrt[3]{D}}$$
 (4.1)

$$Q_{adm,tubular,subcri} = \frac{0.305}{n} D^{\frac{8}{3}} \sqrt{i}$$
(4.2)

$$U_{tubular,subcri} = \frac{0.452}{n} D^{\frac{2}{3}} \sqrt{i}$$
(4.3)

$$Q_{adm,tubular,supercri} = 1,533D^{\frac{5}{2}}$$
(4.4)

$$U_{tubular,supercri.} = 2,56\sqrt{D} \tag{4.5}$$

Em que: I_{c, tubular}: Declividade crítica para bueiro tubular.

Q_{adm, tubular, subcri}: Vazão admissível no bueiro tubular no regime subcrítico U_{tubular, subcri}: Velocidade no bueiro tubular no regime subcrítico

Q_{adm, tubular,supercri}:Vazão admissível no bueiro tubular no regime supercrítico

Utubular, supercri: Velocidade no bueiro tubular no regime supercrítico

O *SisCCoH* calcula a declividade crítica, a vazão admissível e a velocidade no canal para bueiros tubulares utilizando as equações (4.1), (4.2), (4.3), (4.4) e (4.5).

As equações (4.2) e (4.3), diferenciam-se das equações (4.4) e (4.5) quanto ao regime de escoamento no canal, em que o índice *subcri* indica o regime subcrítico e *supercri*, o regime supercrítico. A definição do regime foi feita comparando-se a equação (4.1) à declividade do canal.

Analogamente, para bueiros celulares, o *SisCCoH* utiliza as equações (4.6) a (4.10) :

$$I_{c,celular} = \frac{2.6 n^2}{\sqrt[3]{H}} \left(3 + \frac{4 H}{B}\right)^{\frac{4}{3}}$$
(4.6)

$$Q_{adm,celular,subcri} = \left[\frac{(0.8 B H)^5}{(B + 1.6 H)^2}\right]^{\frac{1}{3}} \frac{\sqrt{i}}{n}$$
(4.7)

$$U_{celular,subcri} = \frac{Q_{adm}}{0.8BH}$$
(4.8)

$$Q_{adm,celular,supercri} = 1,705BH^{\frac{3}{2}}$$
(4.9)

$$U_{celular,supercri} = 2,56\sqrt{H} \tag{4.10}$$

Em que: I_{c, celular}: Declividade crítica no bueiro celular.

Qadm, celular, subcri: Vazão admissível no bueiro celular no regime subcrítico.

U_{celular, subcri}: Velocidade no bueiro celular no regime subcrítico.

Q_{adm, celular, supercri}: Vazão admissível no bueiro celular no regime supercrítico. U_{celular, supercri}: Velocidade no bueiro celular no regime supercrítico.

Na situação de funcionamento como orifício, a vazão transportada, a admissível e velocidade nos bueiros tubulares são calculadas pelas equações (4.11) a (4.15).

$$Q_o = C_d A \sqrt{2gh} \tag{4.11}$$

$$Q_{adm,tubular,o} = 2,192D^2\sqrt{h} \tag{4.12}$$

$$U_{tubular,o} = 2,79\sqrt{h} \tag{4.13}$$

$$Q_{adm,celular,o} = 2,79Bh\sqrt{h} \tag{4.14}$$

$$U_{celular,o} = 2,79\sqrt{h} \tag{4.15}$$

Em que: Q_o:Vazão transportada em funcionamento como orifício.

Q_{adm,celular,o}: Vazão admissível no bueiro tubular funcionando como orifício. U_{tubular, o}: Velocidade no bueiro tubular funcionando como orifício.

Qadm, celular, o: Vazão admissível no bueiro celular funcionando como orifício.

U_{celular,o}: Velocidade no bueiro celular funcionando como orifício.

No caso de funcionamento com entrada e saída do bueiro afogadas, considerouse a equação da Conservação de Energia e a perda de carga foi calculada por:

$$\Delta h = \left(C_e + C_s + \frac{2 gn^2 L}{R_h^{\frac{4}{3}}}\right) \frac{U^2}{2g}$$

(4.16)

Em que: C_e: Perda de carga na entrada (m).

C_s: Perda de carga na saída (m).

R_h: Raio hidráulico (m).

Na equação (4.16), o termo C_e é avaliado entre 0,2 a 0,7 e o coeficiente C_s varia entre 0,3 a 1,0, segundo (U.S. Army Corps of Engineers *apud* Marcio & Lara 2012).

Ressalta-se que no caso de linhas múltiplas, o programa considera uma redução da capacidade de vazão de 5% para cada linha adicional. Assim, admite-se que para um bueiro duplo sua capacidade de vazão total seja de 95% da soma das capacidades de vazão de cada linha de bueiro; para bueiros triplos, 90%, e assim em diante.

Exemplo 3.6: Verificação de um bueiro tubular duplo de concreto

Determine as características hidráulicas de um bueiro tubular de concreto com vazão afluente de 16 m/s, rugosidade de 0,015, declividade de 2%, diâmetro de 1,80 m com extensão de 4,20 e altura do aterro em relação ao emboque de 3 m.

A figura 4.1 exibe as abas *Dados* (a esquerda) e *Resultados* (a direita). Na primeira, é possível escolher entre bueiros tubulares e celulares, além do número de linhas, das quais é constituído. Pode-se escolher o material entre concreto ou metálico e informar a condição de jusante, se o bueiro está submerso ou não. Se submerso, ele funciona como um conduto forçado e é necessário informar os coeficientes C_s e C_e , que usualmente são adotados iguais a 0,2 e 1,0, respectivamente.

Dados Resultados Visualização Relatório		Dados Resultados Visualização Relatório			
Tipo de bueiro:	Material: © Concreto © Metálico	Parâmetros Hidráulicos:			
 Tubular duplo Tubular triplo Celular triplo 	Condição de jusante: Ocorre carga hidráulica a jusante? ◎ Sim				
Coeficientes de perda de carga na entr	ada e saída:	Tipo de bueiro	BDTC Ø 1,8		
		Condição de funcionamento hidráulico do bueiro	Orifício		
Tipo:	e: 💼 🛛 C.S: 💷	Carga a partir do eixo da obra (m)	1,4059		
ados necessários:		Altura total do NA a montante (m)	2,3059		
		Profundidade Operacional em Escoamento Uniforme (m)	0,9713		
Coeficiente de Manning Declividade (m/m) Comprimento do bueiro (m)	0,015 20 0,02 4,2 1.8				
Altura do aterro em Relação ao emboque	(m) 3	Informação			
Comandos Calcular Nova Altem	ativa Cancelar	Os cálculos hidráulicos compostos para a condição operacional e podem ser realizados também com os módulos Seções Regulare Gradualmente Variado. Comandos Visualizar Relatório Temina	specífica, s e Regime r		

Figura 4.1 - Dados e Resultados de um bueiro tubular de concreto

À esquerda da Figura 4.1 são informados o tipo de condição de funcionamento, a carga a partir do eixo da obra e a altura total do NA de montante, a partir do fundo do emboque. Já a figura 4.2 exibe a visualização dos resultados e o relatório que pode ser exportado para o Excel.

🕼 Estrutu	iras Hidráulica:	- Bueiros		X	Gr Estruturas Hidráulicas - Bueiros	
Dados	Resultados	Visualização	Relatório		Dados Resultados Visualização Relatório	
Esque	ema das co	ndições hidráu	ulicas do bueiro:		Relatório:	
D Hm	(m) 1,8 (m) 2,305	U h	(m/s) 5,711 (m) 1,405	L (m) 4,2 H _{aterro} (m) 3	SisCCoH - Sistema para Cálculos de Componentes Hi Estruturas Hidráulicas - Bueiros	dráulicos
					Dados de Entrada	^
					Vazão afluente (m³/s)	16
	BDT	CØ 1,8 - Fi	uncionando co	mo Orifício	Coeficiente de Manning	0,015
					Declividade (m/m)	0,02
					Comprimento do bueiro (m)	4,2
					Diâmetro (m)	1,8
	9				Altura do aterro em Relação ao emboque (m)	3
	Haterro		7		Resultados	
		Hm h	_		Tipo de bueiro	BDTC Ø 1,8
					Condição de funcionamento hidráulico do bueiro	Orifício
	*	* · · · ·		<u> </u>	Carga a partir do eixo da obra (m)	1,4059
		L			Altura total do NA a montante (m)	2,3059
		1	L		Profundidade Operacional em Escoamento Uniforme (m)	0,9713
					Velocidade Associada à Prof. Operacional em Esc. Uniforme	5,7118
					<u> </u>	*
Coma	indos	Relatório	Ten	minar	Comandos Exportar para Excel Terminar	

Figura 4.2 - Visualização e Relatório de Bueiros

4.2 Escoamento em Degraus

4.2.1 Regime de Escoamento em Degraus

Em escoamento em degraus é apresentado ao usuário as seguintes janelas: Regime de Escoamento em Degraus, Regime Nappe Flow, Regime Skimming Flow, Canais com Trechos Distintos e Quedas singulares.

No módulo Regime de Escoamento é caracterizado o regime de escoamento que pode ser classificado em Nappe Flow, em Skimming Flow, ou regime de transição. O regime Nappe Flow possui a formação de bolsões de ar em cada degrau, conhecido também como quedas sucessivas. O regime Skimming Flow, segundo Ohtsu *et al.* (2004), possui a formação de vórtices em cada degrau, conhecido também como escoamento deslizante sob turbilhões. O regime de transição ora forma o escoamento aerado, ora forma os vórtices em cada degrau, alternando suas características dentre os dois tipos de escoamento anteriores (Matos e Quintela *apud* Simões 2008).

O *SisCCoH* dimensiona o escoamento em degraus baseado em estudos empíricos e uma simplificação da metodologia é a desconsideração do tipo do material do canal em degraus. A dissipação de energia neste escoamento é mais influenciada pelas características do degrau que a rugosidade do material. Dessa forma, desde que as geometrias características para o cálculo do escoamento em degraus sejam estabelecidas, pode-se adotar uma variedade de revestimentos, tais como o concreto, pedra argamassada, gabião caixa dentre outros. No entanto, para estruturas de maior magnitude ou passíveis de conduzir escoamentos em altas velocidades, recomenda-se a estrutura revestida em concreto, dadas as grandes perturbações do escoamento e dissipação de energia que ocorrem ao longo do canal em degraus.

Para a identificação do regime do escoamento, os dados requeridos são: a vazão de entrada (Q), a largura do canal (B), altura dos degraus (S) e o comprimento dos degraus (l). E, a partir dos dados de entrada são calculados a razão S/l, o ângulo formado entre um plano horizontal e aquele que contém as quinas dos degraus da escada (θ) , a profundidade crítica, a vazão específica e a vazão para a profundidade crítica máxima dos regimes Nappe Flow, Skimming Flow e em transição.

O cálculo do regime Nappe Flow é válido para declividades entre 0,05 e 1,43, sendo que para declividades entre 0,05 e 0,1 o dimensionamento foi baseado nos experimentos de Chanson (2001) e para as declividades entre 0,1 a 1,43 na metodologia de Yasuda *et al.* (2001). Em sua modelagem empírica, foi verificado que a relação yc/h estava sujeita ao número de Reynolds, à relação entre a largura e a profundidade crítica e à declividade do canal, mas que poderiam ser desprezadas para os valores B/yc \geq 5 e Re \geq 20.000 (Yasuda *et al.* 2001).

Para as declividades inferiores a 0,1 podem ser identificados no *SisCCoH* o regime de transição ou o regime Nappe Flow. A vazão máxima do regime Nappe Flow (igual a mínima do regime de transição) é calculada a partir de considerações de Chanson (2001) e a profundidade crítica máxima é obtida pela equação (4.17):

$$y_{c,max} = \left(0,89 - 0,4\frac{S}{l}\right)S$$
, $para\ 0,05 \le \frac{S}{l} < 0,1$ (4.17)

Em que: l: Comprimento do degrau.

S: Altura do degrau.

y_{c,máx:} Profundidade crítica máxima.

A partir da profundidade crítica é obtida a vazão limite do Nappe Flow. Se a vazão for acima deste valor para uma determinada geometria, o regime a ser caracterizado é o regime de transição, desde que respeitadas as condições de contorno.

No caso do regime Nappe Flow com declividades superiores a 0,1, é válida a equação (4.18) (Yasuda *et al.*, 2001) para o limite inferior no intervalo de θ entre 5,7° e 55°.

$$\frac{S}{y_c} = 0,57.\,(\tan\theta)^3 + 1,3, \quad para\,5,7^\circ \le \theta \le 55^\circ$$
(4.18)

Em que: θ: Ângulo formado entre o plano horizontal e o formado pelo alinhamento das quinas dos degraus.

Este tipo de regime pode ser ainda subdividido em Nappe Flow com completo ou parcial desenvolvimento de ressalto hidráulico. O limite do regime com formação de ressalto completo é dado pela equação (4.19), válido para $5,7^{\circ} \le \theta \le 10,2^{\circ}$:

$$\frac{S}{y_c} \ge -12,5537.\,(\tan\theta)^3 + 21.4360.\,(\tan\theta)^2 + 15,7799.\,(\tan\theta) - 0,4583 \tag{4.19}$$

O Nappe Flow com parcial desenvolvimento do ressalto hidráulico pode ocorrer caso a equação (4.20) seja satisfeita e caso ocorresse um aumento do valor da declividade ou da vazão, estes não contribuiriam para a formação do ressalto hidráulico completo (Chanson, 1994).

$$\frac{S}{yc} \ge \{[0,0916(\tan\theta)]^{-1,276}\}^{-1}, \text{ para } 11,31^{\circ} \le \theta \le 30,96^{\circ}$$
(4.20)

O dimensionamento do regime Skimming Flow é válido para declividades entre 0,1 e 1,43 e foi fundamentado nas proposições de Ohtsu *et al.* (2004). Para identificar o regime Skimming Flow é calculado o limite superior dado pela equação (4.21).

$$\left(\frac{S}{y_c}\right)_s = \left[\frac{7}{6}(\tan\theta)\right]^{\frac{1}{6}}, \quad \text{para } 5.7^\circ < \theta < 55^\circ \tag{4.21}$$

Em que: $\left(\frac{s}{y_c}\right)_s$: limite superior do regime Skimming Flow

A vazão mínima do regime Skimming Flow é calculada a partir de y_c obtido nessa equação. E o regime Skimming Flow também pode ser subdividido em tipo A e tipo B. O limite entre esses tipos é apresentado na equação (4.22):

$$\left(\frac{S}{y_c}\right)_{B} = 13(\tan\theta)^2 - 2,73.\tan\theta + 0,373, \text{ para } 5.7^\circ < \theta < 19^\circ$$
(4.22)

Em que: $\left(\frac{S}{y_c}\right)_B$: limite entre tipo A e B do Skimming Flow

As notificações desse módulo referem-se ao preenchimento adequado do formulário para a rotina de cálculo realizada pelo programa. Se o usuário deixar de preencher algum campo a mensagem "Entrada incompleta de dados!" é mostrada ao usuário, assim como se o mesmo entrar com algum valor nulo é exibida a mensagem "Dados incompatíveis para a resolução do problema!" pelo programa. A mensagem "Faixas de Vazão não Calculada!" é exibida no campo de classificação do regime, caso ocorra uma solução negativa para as vazões máximas e mínimas calculadas pelo programa e, nesta situação a mensagem "Dados incompatíveis com o problema!" é exibida na tela. Neste caso, o usuário precisa alterar as dimensões da geometria da escada para novo dimensionamento.

A mensagem "Os cálculos são válidos para o intervalo $0,1 \leq (S/y_c) < (S/y_c)s$ " indica uma condição de contorno do regime skimming flow baseado nos experimentos de Ohtsu (2004). Além disso, a notificação "S/yc maior que 10. Tente outros valores!" refere-se ao limite superior do regime Nappe Flow com formação de ressalto completo. O aviso que o "O cálculo é válido para a faixa de inclinações com ângulos entre 2,86° e 5,71°.", refere-se aos limites de cálculo do regime Nappe Flow quando utilizada declividades inferiores a 0,1. Ainda neste módulo, o aviso "S/y_c menor que 1,14 ou S/y_c maior que 7. Tente outros valores!" refere-se a um limite do Nappe para declividades menores que 0,1, conforme estudos de Chanson (2001). E, por fim, a notificação "Tente outros Valores!" indicam que os dados de entrada estão fora do condicionamento empírico dos autores consultados e sugere ao usuário tentar outros valores.

Exemplo 4.1: Identificação do regime de escoamento em degraus.

Dado um escoamento em degraus com vazão igual a 10 m³/s, largura do canal igual a 2,5 m, altura de cada degrau igual a 0,50 m e comprimento do degrau igual a 1,0 m. Identifique o regime de escoamento existente nessa estrutura.

O módulo pode ser acessado por meio do menu *Estruturas Hidráulicas*, *Escoamento em Degraus*, e por fim, *Regime de Escoamento em Degraus*. Após acessar o regime de escoamento em degraus a janela apresentada na Figura 4.3 é aberta e nesta é possível entrar com os dados para caracterizar o regime.

Figura 4.3 - Caracterização do escoamento de Canais em Degraus

A Figura 4.3 ilustra uma aplicação do módulo em que o regime de escoamento Skimming Flow foi detectado:

O botão *Legenda Entrada de Dados* facilita a visualização em desenho dos dados de entrada, mostrando o posicionamento de cada uma das variáveis. E o botão Ilustrações apresenta modelos esquemáticos definindo em perfil a indicação das principais características geométricas relevantes no dimensionamento hidráulico de descidas em degraus.

O campo *Faixa de Vazões* indica as vazões máximas e mínimas, para cada regime de escoamento em degraus, e clicando-se em *Abrir Módulo Skimming Flow* é possível continuar o dimensionamento do canal em degraus.

4.2.2 Regime Nappe Flow

Depois de caracterizado o regime de escoamento Nappe Flow, pode-se calcular os dados para dimensionamento clicando em abrir módulo Nappe Flow do módulo descrito anteriormente ou em *Estruturas Hidráulicas*, *Escoamento em degraus*, e *Regime Nappe Flow*.

Neste módulo é calculado o ângulo da estrutura em degraus, a vazão específica, a profundidade crítica, o número de queda (4.23), a altura da parede – equação (4.27) ou (4.28) -, a energia máxima (4.29), a energia residual (4.30) ou (4.31), eficiência de energia dissipada, a profundidade final do escoamento, a velocidade e o número de Froude ao final do escoamento em degraus.

$$D_N = \frac{\left(\frac{Q}{B}\right)^2}{9,81.S^3}$$
(4.23)

Em que: D_N : Número de queda.

O comprimento da queda (L_d), as profundidades conjugadas (y1 e y2) foram calculadas pelas equações (4.24), (4.25) e (4.26).

$$L_d = 4.3 * D_N^{0.27} \tag{4.24}$$

$$\frac{y_1}{S} = 0.54 \, D_N^{0.425} \tag{4.25}$$

$$\frac{y_2}{S} = 1,66 \, D_N^{0,27} \tag{4.26}$$

Em que: L_d: Comprimento da queda (m)

A altura da parede mínima, para que não ocorra o extravasamento lateral, é calculada pela equação (4.27), no caso de Nappe Flow sem desenvolvimento de ressalto hidráulico, e pela equação (4.28) com desenvolvimento de ressalto hidráulico, ainda que parcial (Simões, 2008):

$$H_{parede,min,sem\,ressalto} = 2 * tanh(0,02^{2,5.0} + 0,65) * y_c * 1.4$$
(4.27)
$$H_{parede,min,com\,ressalto} = 1,4 * y_2$$
(4.28)

Em que: H_{parede,mín,sem ressalto}: Altura da parede mínima sem formação de ressalto H_{parede,mín,com ressalto}: Altura da parede mínima com formação de ressalto

As energias máxima ($H_{máx}$), residual (H_r) quando ocorre ou não o ressalto e dissipada (H_{dissip}) foram calculadas pelas equações (4.29) a (4.32).

$$H_{max} = H_d + 1.5 * y_c \tag{4.29}$$

$$H_{r,completo} = \frac{H_{máx} * 0.54 * \left(\frac{y_c}{S}\right)^{0.275} + 1.715 * \left(\frac{y_c}{S}\right)^{-0.55}}{1.5 + H_c/y_c}$$
(4.30)

$$H_{r,parcial} = 1 - \frac{(1-\alpha)\left[1+1.5\left(\frac{y_c}{h}\right)\right] + \sum_{i=1}^{N-1}(1-\alpha)^{-1}}{N+1.5(\frac{y_c}{h})}$$
(4.31)

$$H_{dissip} = H_{max} - H_r \tag{4.32}$$

Em que: $H_{máx}$: Energia máxima (m)

 H_d :. Altura da escada (m) $H_{r,completo}$: Energia residual com ressalto completo (m) $H_{r,parcial}$: Energia residual com ressalto parcial (m) H_{dissip} : Energia dissipada (m)

A seguir é mostrado um exemplo de cálculo do escoamento em degraus em regime Nappe Flow.

Exemplo 4.2: Cálculo do escoamento em degraus em regime de Nappe Flow.

Uma descida de água em degraus que consiste em 10 degraus, altura dos degraus de 0,5m, 2,5 m de comprimento, 4,0 m de largura e desnível total de 5,0 m recebe uma vazão de 2,0 m³. Identifique as condições do escoamento e a energia dissipada na base dessa estrutura hidráulica.

Acessando o módulo *Escoamento em Degraus*, *Regime de Escoamento* é possível, inicialmente, identificar o tipo de escoamento como Nappe Flow, conforme ilustrado na Figura 4.4.

Vados de Entrada Vazão - Q (m³/s)	2	Gráfico				
Vazão - Q (m³/s)	2					
largura da Canal - R (m)		Limite	e do Escoamento de Ca	nais om Dograus		
Largura do Canar - D (III)	4	3,0	·	nais en Degraus		
Altura dos Degraus - <mark>S</mark> (m)	0,5	25			/	
Comprimento dos <mark>Degraus - I (</mark> m) 2,5	2,2				
omandos		2,0 -				
Calcular Limpar Dados	Terminar	₹ 1,5 -				
aixa de Vazões (m³∕s)						-
	Ok	1,0 -	,			
oncluido! Faixas de Vazőes (m³/	(s)					
Regime de Escoamento Q Minima	Q Maxima	0,5				
Nappe Flow 0	2,973					
Transição 2,973	5,256	5 10 15	20 25 30	35 40	45 50	55
Skimming Flow 5,256	-	5 10 15	θ (grau	5)	45 50	22
Regime Nappe Flo	W	Limite Nappe Flow (Yasut — — — Limite Tipo B (Ohtsu et al.	/a et al., 2001) , 2004)	Limite Skimming	(Flow (Ohtsulet al., 2004) Completo	

Figura 4.4 - Caracterização do Regime de Escoamento Nappe Flow

A Figura 4.5 exibe a entrada de dados a esquerda e a direita os resultados. Percebe-se do lado direito a apresentação dos resultados agrupados por *Parâmetros Hidráulicos* e os *Dados para Dimensionamento*.

Informação		Parâmetros Hidráulicos	
As metodologias adotadas para a formu foram preconizadas por Yasuda et al. (20	lação dos cálculos	Ângulo com a Horizontal (graus)	11,31
e Chamani e Rajaratnam (1994).		Vazão (m³/s.m)	0,5
		Profundidade Crítica (m)	0,294
Dados Necessários		Número de Queda	0,204
Vazão - Q (m³/s)	2	Dados para Dimensionamento	
Lorgues do Conol - R (m)	4	Altura da Parede (m)	0,762
Largura do Canal - B (m)		Energia Residual (m)	0,859
Altura dos Degraus - S (m)	0,5	Energia Dissipada (m)	4,582
Comprimento dos Degraus - I (m)	2,5	Energia Máxima (m)	5,441
	5	Eficiência (%)	84,214
Desnivel do Trecho - Hd (m)		Profundidade Final do Escoamento (m)	0,132
Número de Degraus	10	Velocidade Final (m/s)	3,776
		Froude Final	3,313
Comandos			
Calcular	Cancelar		
		Comandos	
		Visualizar	Teminar

Figura 4.5 - Dados e Resultados do regime Nappe Flow

Já na Figura 4.6 são ilustradas as dimensões em um esquema geral do regime Nappe Flow indicando a altura do degrau, o comprimento da queda e do ressalto.

Regime Nappe Flow	v		AT Regime Nappe Flow		×
Dados Resultado	os Visualização Relatório		Dados Resultados Visualização Relatório		
Esquema geral	do Regime Nappe Flow		Relatório:		
H parede (m) Ld (m)	0,762 l (m) 2,5 1,399 L (m) 2,808	S (m) 0,5	SisCCoH - Sistema para Cálculos de Compo Escoamento em Degraus - Regime	onentes Hidráuli Nappe Flow	cos
			Dados de Entrada		~
		ALCONOMIC AND MADE	Vazão - Q (m³/s)	2	
Desen	volvimento Parcial do Ressalto	Hidráulico	Largura do Canal - B (m)	4	
-			Altura dos Degraus - S (m)	0,5	III
			Comprimento dos Degraus - I (m)	2,5	
	-		Desnível do Trecho - Hd (m)	5	
s			Número de Degraus	10	
		\sim	Resultados		-
	Ld+L>I	- N	Parâmetros Hidráulicos	5	
	5		Ângulo com a Horizontal (graus)	11,31	
			Vazão (m³/s.m)	0,5	7
Comandos	Relatório Termina	-	Comandos Exportar para Excel Termina	ar	
	Relatório Termina		Exportar para Excel Termina	ar	

Figura 4.6 - Relatório Regime de Escoamento Nappe Flow

Na aba *Visualização* é mostrado o tipo de desenvolvimento do ressalto hidráulico e em *Relatórios* são exibidos os dados para dimensionamento da estrutura.

4.2.3 Regime Skimming Flow

Uma vez caracterizado o regime de escoamento Skimming Flow, na janela Regime de escoamento em degraus, o dimensionamento pode ser acessado pelo campo na parte inferior esquerda indicado por *Abrir Módulo Skimming Flow*. A metodologia adotada para a formulação dos cálculos foi fundamentada em Ohtsu *et al.* (2004). Segundo o autor, a importância da estimativa do escoamento em degraus relaciona-se à medição da dissipação de energia e à resistência ao escoamento. Este módulo é composto pelas seguintes abas: *Dados, Resultados, Visualização, Início do Escoamento, Risco de Cavitação* e *Relatório*.

Os experimentos de Ohtsu *et al.* (2004) para o regime *Skimming Flow* foram realizados em descidas em degraus com inclinação entre $5,7^{\circ}$ e 55° . Para escoamento em degraus entre 19° e 55°, a linha d'água era quase uniforme e independente da relação entre a altura do degrau e a profundidade crítica, formando um perfil Tipo A, com a lâmina d'água paralela ao plano formado entre as quinas dos degraus. E, para as inclinações entre $5,7^{\circ}$ e 19° , o escoamento nem sempre era paralelo a linha formada pelas quinas dos degraus, variando entre o *Tipo A e* quando a razão S/yc se tornava

maior caracterizava um regime *Tipo B*. Segundo Ohtsu *et al.* (2004) o limite superior e o limite entre os tipos A e B pode ser verificado pelas equações (4.21) e (4.22), apresentadas anteriormente.

Na rotina de cálculo do *Skimming Flow* é requerido ao usuário informar a vazão, a largura do canal, a altura do degrau, o comprimento do patamar do degrau e a altura total da queda (H_{dam}). O *SisCCoH* calcula a profundidade crítica do escoamento, o adimensional dado pela razão entre a altura da queda e a profundidade crítica, as variáveis do início do escoamento, a profundidade relativa, o coeficiente de atrito, a profundidade representativa, a energia residual e avalia o risco de cavitação. As referências geométricas dos parâmetros calculados são exibidos no *SisCCoH* na aba *Visualização*.

Na Figura 4.7 estão esboçados os tipos de escadas utilizadas nos experimentos de Ohtsu *et al.* (2004). Além disso, estão indicados alguns parâmetros geométricos como a altura do escoamento não uniforme (H_e), altura da descida em degraus (H_{dam}), altura do degrau (S) e inclinação da escada (θ) a serem considerados no dimensionamento hidráulico.

Figura 4.7 - Esquema de escadas utilizadas. Em (a) descida em degraus utilizada para θ =19, 23, 30 e 55° e em (b) utilizada para θ =5,7, 8,5 e 11,3°.

Pela Figura 4.7 é possível verificar duas regiões de escoamento, uma não uniforme e outra aproximadamente uniforme (ou quase–uniforme). Mais especificamente, na parte (a) mostra um exemplo de escoamento em degraus para valores de θ maiores que 19°, em que a escada foi iniciada com um perfil de transição vertical suave para garantir que não haja o descolamento da veia líquida do escoamento do fundo do canal.

A avaliação do ressalto hidráulico formado imediatamente a jusante do canal em degraus, por meio da profundidade conjugada a jusante (y_2) , foi utilizada para estimar a região do escoamento aproximadamente uniforme, dada a dificuldade de mensurar as mudanças na profundidade no escoamento aerado.

Dessa forma, o limite entre as regiões de escoamento não uniforme e aproximadamente uniforme, foi definido empiricamente para determinados valores de θ e S/y_c, para os quais a relação y₂/y_c permaneceu constante. A altura relativa da escada (H_e/y_c) requerida para formar o regime aproximadamente uniforme é calculada pela equação (4.33).

$$\frac{H_e}{y_c} = (-1.21 * 10^{-5} \theta^3 + 1.6 * 10^{-3} \theta^2 - 7.13 * 10^{-2} \theta + 1.3)^{-1} \\ * \left(5.7 + 6.7 \ e^{-6.5 \frac{S}{y_c}} \right)$$
(4.33)

Em que: He: Altura do ponto inicial da queda ao início do escoamento aproximadamente uniforme.

Se $H_{dam}/y_c \ge H_e/y_c$, o escoamento possui uma região de escoamento aproximadamente uniforme, e calcula-se o fator de atrito e a profundidade representativa e em seguida, calcula-se a concentração média de ar. Senão, ele possui apenas uma região de escoamento não uniforme e no seu dimensionamento calcula-se a energia residual relativa (E_r/y_c).

O coeficiente de atrito (f) para $H_{dam}/y_c \ge H_e/y_c$ (regime aproximadamente uniforme) e $0,1 \le S/y_c \le 0,5$ é calculado pelas equações (4.34) e (4.35)

$$f = f_{máx} - A\left(0.5 - \frac{S}{y_c}\right), para 0.1^\circ \le \frac{S}{yc} \le 0.5$$
 (4.34)

$$f = f_{máx}$$
, para $0.5^{\circ} \le \frac{S}{y_c} \le \left(\frac{S}{y_c}\right)_s$ (4.35)

Em que: Para $5,7^{\circ} \le \theta \le 19^{\circ}$:

$$A = 1,7 * 10^{3}\theta^{2} + 6,4 * 10^{2}\theta - 1,5 * 10^{-1}$$
(4.30)

(1.36)

$$f_{máx} = -4.2 * 10^{-4} \theta^2 + 1.6 * 10^{-2} * \theta + 3.2 * 10^{-2}$$
(4.37)

Para $19^{\circ} \le \theta \le 55^{\circ}$:

$$A = 0,452$$
 (4.38)

$$f_{máx} = 2,32 * 10^{-5} \theta^2 - 2,75 * 10^{-3} \theta + 2,31 * 10^{-1}$$
(4.39)

A profundidade representativa (d_w) da superfície de água é calculada no *software* pela equação (4.40), obtida por uma estimativa indireta que considera a energia residual do *Skimming Flow* equivalente a energia E₁ no ponto anterior ao ressalto hidráulico (imediatamente a jusante do canal em degraus), segundo Yasuda e Ohtsu (1999) *apud* Ohtsu *et al.* (2004, p. 863).

$$d_{w} = \left(\frac{f}{8 * \operatorname{sen}\theta}\right)^{\frac{1}{3}} * y_{c}$$

$$(4.40)$$

Em que: d_w : Profundidade representativa do escoamento (m).

Para a região de escoamento aproximadamente uniforme a energia residual do escoamento é calculada pelas equações (4.41) e (4.42) para o Skimming Flow classificado como tipo A, e tipo B, respectivamente:

$$E_{\text{ru,tipo A}} = y_{\text{c}} * \left[\left(\frac{d_{\text{w}}}{y_{\text{c}}} \right) * \cos \theta + 0.5 * \left(\frac{y_{\text{c}}}{d_{\text{w}}} \right)^2 \right]$$
(4.41)

$$E_{\rm ru,tipo B} = y_{\rm c} * \left[\left(\frac{d_{\rm w}}{y_{\rm c}} \right) + 0.5 * \left(\frac{y_{\rm c}}{d_{\rm w}} \right)^2 \right]$$
(4.42)

Para a região não uniforme $(H_{dam}/y_c < H_e/y_c)$ calcula-se para ambos os tipos a energia residual (E_r) pela equação 4.43, em que E_{ru} é obtido pelas equações (4.41) e (4.42).

$$E_{r} = y_{c} * \left\{ 1.5 + (E_{ru} - 1.5) * \left\{ 1 - \left[1 - \left(\frac{H_{dam}}{H_{e}} \right) \right]^{m} \right\} \right\}$$
(4.43)

$$m = \frac{-\theta}{25} + 4 \tag{4.44}$$

Em que: $E_r \acute{e}$ a energia residual de região não-uniforme (m)

Para a região de escoamento aproximadamente uniforme, a concentração média de ar (C_{med}) é calculada por (Ohtsu *et al.* 2004):

$$C_{med} = d - 0.3 * e^{\left(-5*\frac{s}{yc}-4\frac{s}{yc}\right)}$$
 (4.45)

Em que: d = 0,3, para $5,7^{\circ} \le \theta < 19^{\circ}$:

$$d = -2 * 10^{-4} * \theta^{2} + 2.14 * 10^{-2} * \theta - 3.57 * 10^{-2}, \text{ para} \quad (4.46)$$
$$19^{\circ} \le \theta \le 55^{\circ}$$

Em seguida $y_{0,9}$ (correspondente a profundidade normal quando a concentração de ar é igual a 0,9) é calculado por (Ohtsu *et al.* 2004):

$$Y_{0,9} = \frac{d}{1 - Cmed}$$
 (4.47)

Em que: $Y_{0,9}$, profundidade normal referente a C = 0,9.

E a altura do muro da escada (Hw) é calculada por:

$$H_{w} = 1.4 * Y_{0.9} \tag{4.48}$$

Em que: $Y_{0,9}$, profundidade normal referente a C = 0,9.

O *SisCCoH* calcula o número de Froude rugoso (f') pela equação (4.49) considerando uma rugosidade na superfície da calha (k) dada pela equação (4.50) em concordância ao recomendado por Keller e Rastogui (1977), conforme citado por Gomes (2006, p. 21).

$$f' = \frac{Q/B}{\sqrt{9.81 * k^3 * (\sin \theta)}}$$
(4.49)

$$k = s * \cos \theta \tag{4.50}$$

Em que: f' é o número de Froude rugoso k é rugosidade na superfície da calha A posição do início de aeração (L_a) é determinada pela equação (4.51) e a respectiva profundidade (Y_a) é dada pela equação (4.52), segundo Chanson (2002) *apud* Gomes (2006, p. 22).

$$L_a = 9,719 * (\sin\theta)^{0,0796} * f'^{0,713} * k$$
(4.51)

$$Y_a = \frac{0.4034 * f'^{0.592} * k}{(\sin\theta)^{0.04}}$$
(4.52)

Em que: L_a é a posição de início da aeração

Y_a é a profundidade de início da aeração

A velocidade do escoamento aerado é obtida em seguida, aplicando-se a equação da continuidade. A velocidade crítica de cavitação no início da aeração (V_{cra}) é calculada por:

$$V_{cra} = 16,29 + \frac{9,91}{1 + e^{(0.4)*\left(\frac{1}{0,23}\right)}}$$
(4.53)

Em que: V_{cra} é a velocidade mínima de cavitação

Após o cálculo dessas velocidades o programa notifica o usuário com as seguintes expressões: "Va < Vcra: Sem risco de cavitação", no caso da velocidade no ponto inicial da aeração for menor que a crítica de cavitação e " $Va \ge Vcra: Risco de$ *cavitação. Tente outros valores.*", no caso de velocidade inicial superior. A metodologia para cálculo do risco de cavitação é baseada na metodologia descrita por Gomes (2006) e possui as seguintes condições de contorno:

- $0,35 \le x/L_a \le 1,2;$
- $y_c/S \le 4,09;$
- $48^{\circ} \le \theta \le 58;$
- S = 0,30m; 0,60m; 0,90m 1,20m;
- Vertedouro com muros verticais orientados no sentido do escoamento (não divergentes não convergentes);
- Vertedouro sem qualquer elemento sobre a calha (pilares, manipuladores, turbulência);
- Tensão relativa de vapor a 20°C;
- Ao nível do mar a $-10,09 \text{ mH}_2\text{O}$.

Exemplo 4.3: Cálculo do escoamento em degraus em regime Skimming Flow.

Dado um escoamento em degraus com vazão igual a 10 m³/s, largura do canal igual a 2,5 m, altura de cada degrau igual a 0,5 m, comprimento do degrau igual a 1 m e desnível do trecho igual a 50 m, identifique o regime de escoamento existente e apresente os parâmetros hidráulicos e dados para dimensionamento.

Na aba *Dados*, apresentada à esquerda da Figura 4.8, digita-se os parâmetros geométricos solicitados. Caso o usuário tenha previamente caracterizado o regime de escoamento no módulo anterior, esses dados são automaticamente carregados, bastando apenas definir o desnível do trecho. Em seguida, na aba *Resultados* são apresentados os parâmetros hidráulicos indicados e os dados para dimensionamento.

Dados	Resultados Visualização Início do Escoan	nento Risco de Cavitação Rel	Dados Resultados Visualização Início do Escoamento Parâmetros Hidráulicos:	Risco de Cavitação Relatório
A " Yas	metodologia adotada para a formulação dos o Flow Characteristics of Skimming Flows in St suda e Takahashi, publicado no Journal of Hyo Setembro de 2004; Páginas	álculos foi fundamentada em epped Channels ", de Ohtsu, draulic Engineering - ASCE em 860 - 869.	Ângulo com a Horizontal (graus) Vazão (m∛s.m) Profundidade Crítica (m)	26,565 4 1,177
Dade	os necessários:		Concentração Média de Ar Coeficiente de Atrito	0,369 0,172
	Vazão (m³∕s)	10	Dados para dimensionamento:	
	Largura do Canal (m)	2,5	Profundidade Aerada do Escoamento (m)	0,678
	Altura do Degrau (m)	0,5	Velocidade do Escoamento Aerado (m/s)	5,9
	Comprimento do Patamar do Degrau (m)	1	Profundidade Final do Escoamento (m)	0,428
	Despível do Trecho (m)	50	Velocidade Final do Escoamento (m/s)	9,35
	Desilver do necilo (in)		Altura de Referência da Parede (m)	0,95
Com	andos Calcular (Cancelar	Comandos	
	Ok		Visualizar I Inicio Escoamento	Relatório

Figura 4.8 - Dados e Resultados do regime Skimming Flow

Na aba *Visualização* e *Início de Escoamento* são exibidos dois esquemas mostrando as posições e características geométricas relevantes, conforme indicado na Figura 4.9.

🕼 Estruturas Hidráulicas - Escoamentos em Degrau - Regime Skimming Flow	🕼 Estruturas Hidráulicas - Escoamentos em Degrau - Regime Skimming Flow
Dados Resultados Visualização Início do Escoamento Risco de Cavitado Esquema geral do escoamento em canais com degrau: Y _c (m) 1,177 H dam 0.5 Y _{o,9} (m) 0,678 H m 0.95 1 (m) 1 θ o 26,56 Escoamento aproximadamente uniforme - Tipo A 1 1 1 Human 9 1 1 1 1 1 1	Dados Resultados Visualização Início do Escoamento Risco de Cavitação Relatório Referência CHANSON. Hydraulics of skimming flows over stepped channels and spillways. Journal of Hydraulic Research, IAHR, Delft, v.32, n. 3, p. 445-460, 1994. Cálculo do Ponto de Início do Escoamento Aerado Altura da rugosidade do degrau - k (m) 0,447 Posição do Início da Aeração - LA (m) 15,291 Profundidade do Início da Aeração - Ya 0,558 Posição de Início da Aeração La Camada Limite Va
Comandos Início Escoamento Relatório Risco de Cavitação Terminar	Comandos Risco de Cavitação Relatório Terminar

Figura 4.9 - Visualização e Início do Escoamento do regime Skimming Flow

Alternando-se entre as abas para *Risco de Cavitação*, verifica-se o seguinte aviso, exibido na Figura 4.10.

į	0 em seguin - 0,35 - Yc/S - 48* - S = 1 - Verb - Verb - Ten - Ao n	prego da metodolog ntes condições de c (< = x/La <= 1,20; 5< = 8,0= (< = 8 <= 58°; 0,30m, S = 0,60m, S edouros com muros edouros sem qualqu añvel do mar a -10,0%	ia para o cál contorno, seg i = 0,90m e S verticais e o er elemento or da a 20° C, 3 mH ₂ O.	culo do risco de undo Gomes (20 = 1,20m; ientados no ser sobre a calha (p Ok	cavitação limita-se è 06) : tido do escoamento ilares, manipuladore:	ss (não divergentes, ná s, turbulência);	ão convergen
0 -							
0,	30	0,50	0,70	x/La 0,90	1,10	1,30	
				18 D			

Figura 4.10 - Notificação das condições de contorno consideradas

Na aba *Risco de Cavitação* (Figura 4.11), propriamente dita, é apresentado um gráfico que compara a velocidade no início da aeração e a velocidade crítica, definindo

uma curva limite para diferentes valores de x/L_a , em que x é a posição do escoamento e L_a é o ponto inicial do escoamento aerado. Se abaixo da curva, o risco de cavitação é baixo, caso contrário alto e, dessa forma, deve-se testar outros valores.

Estruturas Hidráulicas - Escoamentos em Degrau - Regime Skimming Flow Dados Resultados Visualização Início do Escoamento Risco de Cavita Cálculo do Risco de Cavitação	cão Relató	Estruturas Hidráulicas - Escoamentos em Degrau - Regime Skim Dados Resultados Visualização Início do Escoamento Relatório:	ming Flow
Velocidade no Início da Aeração - Va (m/s) Velocidade Crítica de Cavitação no Início da Aeração - Vcra (m/s) Va < Vcra: Sem risco de cavitação	7,164 17,771	SisCCoH - Sistema para Cálculos de Compo Estruturas Hidráulicas - Escoamentos em Degrau	nentes Hidráulicos - Regime Skimming Flow
Risco de Cavitação		Dados para Dimensioname	nto^
40		Profundidade Aerada do Escoamento (m)	0,678
		Velocidade do Escoamento Aerado (m/s)	5,9
30 -		Profundidade Final do Escoamento (m)	0,428
		Velocidade Final do Escoamento (m/s)	9,35
E ₂₀ -		Energia Residual (m)	4,838
N _e		Altura de Referência da Parede (m)	0,95
10 -		Cálculo do Ponto de Início do Escoam	ento Aerado =
		Altura da rugosidade do degrau - k (m)	0,447
030 050 070 090 110	1.80	Posição do Início da Aeração - LA (m)	15,291
x/La Conditional Annual Indian	1,00	Profundidade do Início da Aeração - Ya (m)	0,558
Comandos Relatório Teminar		Comandos Excel Termina	ar

Figura 4.11 - Risco de Cavitação e Relatório do regime Skimming Flow

E, por fim, assim como em outros módulos é permitido ao usuário exportar os dados para Excel ao final da tela de Relatório, conforme indicado à direita na Figura 4.11.

As notificações desse módulo são as seguintes:

- "Os cálculos são válidos para o intervalo 0.1 <= (S/Yc) < (S/Yc)s". Identificando que a relação S/yc pode ter ficado fora do intervalo válido apresentado no subitem anterior;
- "O cálculo é válido para a faixa de inclinações com ângulos entre 5,7° e 55°.", tal como foi estudado por Ohtsu et. al. (2004);
- "Não ha raízes reais positivas", ao calcular o valor de d_w e da Energia residual;
- "Os resultados obtidos estão fora do intervalo estabelecido para o cálculo. Tente outros dados.";
- GOMES, J.F 2006. Campo de pressões: condições de incipiência à cavitação em vertedouros em degraus com declividade IV: 0,75H. 2006.

161 f. Tese (Doutorado) - Instituto de Pesquisas Hidráulicas, Universidade Federal do Rio Grande do Sul, Porto Alegre.". Indicando a referência bibliográfica utilizada para a avaliação do risco de cavitação.

4.2.4 Canais em Trechos Distintos

Em *Canais em Trechos Distintos* são desenvolvidos cálculos que se limitam aos canais retangulares com trechos em degraus ou com trechos que intercalem fundo em calha lisa para um número máximo de 17 trechos. A energia residual e a profundidade final devem ser informadas pelo usuário e podem ser calculadas nos módulos anteriores de escoamento em degraus. Neste módulo podem ser obtidas a energia total e a perda de carga por trecho. A energia total pode ser obtida pelas equações (4.54) e (4.55):

$$E_{tot} = H_{dam} + 1.5 * y_c \tag{4.54}$$

$$E_{tot} = E_{res} + \Delta E \tag{4.55}$$

Em que: E_{tot} é a energia total (m). E_{res} é a energia residual (m). ΔE é a energia dissipada.

Exemplo 4.4: Cálculo de Canais em Trechos Distintos.

Obtenha a energia total e a perda de carga do escoamento ao longo de um canal composto por três trechos em degraus com as características apresentadas na Tabela 4.1:

Turcher	Prof. inicial	Vazão	Largura	Altura	En. Residual	Prof. final
1 recnos	(m)	(m³/s)	(m)	(m)	(m)	(m)
Trecho 01	0,77	8	2	13,3	3,04	0,57
Trecho 02	-	8	2	27,78	3,6	0,51
Trecho 03	-	8	2	38,46	4,16	0,47

Tabela 4.1 - Exemplo de canal com trechos distintos

Os dados de entrada são preenchidos pela janela que pode ser acessada pelo seguinte caminho: *Estruturas hidráulicas, Escoamento em Degraus e Canais com*

Trechos Distintos. A Figura 4.12 ilustra os dados preenchidos. Inicialmente, são digitados o número de trechos, a profundidade inicial e a largura final do canal a ser dimensionado. O usuário precisa clicar *Montar Tabela* para a lista de trechos ser exibida no lado direito da janela no campo *Tabela de Valores*. Em seguida, o usuário deve informar os dados de cada um dos trechos e clicar em confirmar. Ao confirmar, os dados são registrados na tabela e repetir esse processo para cada um dos trechos. Ao terminar de digitar os dados de entrada, a opção *Calcular* estará habilitada. Se algum item não for preenchido, o *SisCCoH* apresenta a mensagem "*Dados incompatíveis para a resolução do problema*".

ados de Entrada Resultados Relatório							
Informação		Tabela de Val	ores				
A metodologia utilizada para o desenvolvimento dos cálculos limita-se à canais retangulares com trechos em degraus ou com trechos que intercalem fundo em calha lisa e em degraus.		Trechos	Q (m)	B (m)	H (m)	Eres. (m)	yF (m)
		Trecho 01	8	2	13,3	3,04	0,57
		Trecho 02	8	2	27,78	3,6	0,51
Número de Trechos		Trecho 03	8	2	38,46	4,16	0,47
Número de Trechos	3						
Prof. Entrada do Canal - y _{inicio} (m)	0,77						
Largura Final do Canal - B final (m)	2						
Montar Tabela Limpar Tabela	Teminar						
Dados de Entrada							
Número do Trecho	3 👻						
Vazão - Q (m³∕s)	8						
Largura Inicial do Canal - B (m)	2						
Altura do Trecho - H (m)	38,46						
Energia Residual do Trecho - Eres. (m)	4,16						
Profundidade Final do Trecho - yF (m)	0,47						
Confirmar]	Calcular					

Figura 4.12 - Dados em canais distintos em escoamento em degraus ou calha lisa.

A aba *Resultados* (Figura 4.13) apresenta os dados de saída do módulo. A energia total e a perda de carga são exibidas por trecho do canal. Em termos totais do canal são obtidos: a energia total, residual, profundidade final, velocidade final e o número de Froude.

dos de Entrada Resi	ultados Relatório			
Resultados por Tre	cho		Resultados Finais	
Trechos	Energia Total - ETot. (m)	Perda de Carga - ∆E (m)		
Trecho 01	15,445	12,405		
Trecho 02	30,86	27,26		
Trecho 03	42,105	37,945		
			Energia Total do Canal - ETot, Canal (m)	81 685
			Energia Residual do Canal - Eres, Canal (m)	4.075
			Profundidade Final do Trecho - yF Canal (m)	0.476
			Velocidade Final do Canal - UF Canal (m/s)	8,403
			Número de Froude - Fr	3,888
			Comandos Relatório Terminar	

Figura 4.13 - Resultados de canais com trechos distintos

Em *Relatórios* (Figura 4.14) é permitida a visualização dos dados de entrada e saída, possibilitando ao usuário exportar os dados para o Excel, assim como nos outros módulos.

dos de Entrada Res	ultados Relatório								
Relatório						1990-1			
		SisCCoH - S	istema para Cá	Iculos de Compor	nentes Hidráulio				
	Escoamento em Degraus - Regime de Escoamento								
		Dados básicos dos trechos							
	Número de l	rechos				3	E		
	Prof. Entrada	do Canal - y	Inicio (m)			0,77			
	Largura Fina	I do Canal - B	nnai (m)			2	T		
			Dados de	entrada dos trech	os		_^		
	Trechos	Q (m)	B (m)	H (m)	Eres (m)	Yf (m)	E		
	Irecho 01	8	2	13,3	3,04	0,57	-		
	Trecho 02	8	2	27,78	3,6	0,51	-		
	Trecho 03	8	2	38,46	4,16	0,47	·		
	E.	Resultados finais							
	Eno	raio Pocidual	do Conol - Eroc	Canal (m)	61,065		-		
	Prof	undidade Fina	al do Trecho - vi	Canal (m)	4,075		-		
	Velo	ocidade Final	do Canal - UF C	anal (m/s)	8 403		-		
		Númer	o de Froude - Fr		3,888		- 12		
			1949-09-09-09-09-00-00-00-00-00-00-00-00-00		pro Marcal Co				
			<i>a</i>		~				
	Trechos		Energia To	tal - ETot. (m)	Perda de Ca	irga - ΔE (m)			
	Trecho 01		15,445		12,405				
	Trecho 02		30,86		27,26		+		

Figura 4.14 - Relatório em Canais com Trechos Distintos

4.2.5 Quedas Singulares

O módulo *Quedas Singulares* permite calcular o número de queda (4.23) o comprimento da queda (4.24), a profundidade anterior e posterior à queda, a profundidade a jusante do ressalto, a profundidade crítica (3.5) e o comprimento do ressalto (3.13). A profundidade anterior foi calculada pela equação (4.56):

$$y_a = S * D_N^{0,22} \tag{4.56}$$

Em que: y_a é a profundidade anterior a queda (m)

Este módulo permite avaliar apenas um degrau, contrapondo-se ao escoamento em degraus nas descidas d'água apresentados anteriormente.

Exemplo 4.5: Dimensionamento de uma queda singular.

Dada uma queda singular com vazão de 4m³/s, largura de 2,5 m, altura do degrau de 1,50 m e profundidade a montante de 0,85 m, obtenha o número de queda, o comprimento da queda, a profundidade anterior e posterior à queda, a profundidade crítica e o comprimento do ressalto.

A Figura 4.15 exibe o preenchimento dos dados a esquerda e os parâmetros hidráulicos calculados pelo *SisCCoH*. Clicando no botão Visualizar é possível acessar a aba *Visualização* e *Relatório* exibidos na Figura 4.16.

II Quedas Singulares Dados Resultados Visualização Rela	tório	ar Quedas Singulares Dados Resultados Visualização Relatório	
Seções retangulares Dados necessários		Parâmetros Hidráulicos	
		Número de Queda	0,077
Vazão (m³/s)	4	Comprimento de Queda (m)	3,23
Largura do canal (m)	2,5	Prof. anterior à queda (m)	0,85
	1.5	Prof. posterior à queda (m)	0,27
Altura do degrau (m)	1,5	Prof. a jusante do ressalto (m)	1,25
Prof. a montante do degrau (m)	0,85	Prof. crítica (m)	
Comandos			
Calcular	Cancelar	Comandos Visualizar Relatório	Terminar

Figura 4.15 - Dados e Resultados de Quedas Singulares

dos R	esultad	los Visu	alização	Relató	rio			Dados Resultados Visualização Relatório		
Esquem Ym (m) Yo (m)	0,85 0,45	Yp (m) Yq (m)	0,85 0,27	<mark>áulicas c</mark> Y2 (m) Ld (m)	lo deg 1,25 3,23	L (m) Yc (m)	6,72 0,64	Relatório: SisCCoH - Sistema para Cálculos de Compone Escoamento em Degraus - Quedas Si	entes Hidráuli ngulares	cos
								Resultados		*
								Número de Queda	0,077	_
		Ye						Comprimento de Queda (m)	3,23	
Ty,								Prof. anterior à queda (m)	0,85	
			>					Prof. posterior à queda (m)	0,27	E
		-	1	Yq	52		Tra	Prof. a jusante do ressalto (m)	1,25	
	L	Yp	1	1000			12	Prof. crítica (m)	0,64	
		, <u> </u>	Ld	+	L	-1		Comprimento do ressalto (m)	6,72	
									-	
Comano	los	Relatório			Termina	ar		Comandos Exportar para Excel Terminar		

Figura 4.16 - Visualização e Relatório de Quedas Singulares.

Na aba *Visualização* é possível perceber as profundidades ao longo do perfil da linha d'água no degrau e comprimentos calculados do ressalto hidráulico.

4.3 Bacias de dissipação por Ressalto Hidráulico

O módulo *Bacias de Dissipação por Ressalto Hidráulico* utilizou a metodologia da entidade norte-americano U.S. Bureau of Reclamation (Peterka, 1984), que propõe alguns tipos de bacias padronizadas. Nessas estruturas, ocorre a dissipação de energia por meio do Ressalto Hidráulico, com a mudança de um regime supercrítico para um subcrítico.

Inicialmente, o usuário informa a vazão, a largura e a profundidade a montante. O primeiro cálculo efetuado é o da velocidade, utilizando a equação da continuidade. E, em seguida, o número de Froude é calculado. Se os dados iniciais não estiverem preenchidos ou se apresentarem como nulos, o *SisCCoH* notifica o usuário com a seguinte informação: "Dados incompatíveis para a resolução do problema!". Se o número de Froude for menor que 1,2, o programa apresenta a seguinte notificação: "Os resultados obtidos estão fora do intervalo estabelecido para o cálculo. Tente outros dados.".

A bacia é classificada como **USBR tipo I** se o Froude a montante for maior que 1,2 e menor que 2,5. A profundidade conjugada do ressalto a jusante é

aproximadamente o dobro da montante e o comprimento da bacia deve ser quatro vezes a profundidade a jusante. O cálculo da profundidade conjugada jusante (D₂) é indicado pela equação (4.57), o comprimento da bacia de dissipação (L) é indicado pela equação (4.58), a energia dissipada (ΔE) é calculada pela equação(4.59), a velocidade de saída (U_{saída}) é indicada pela equação (4.60), a borda livre é calculada pela equação (4.61) e a altura da parede (H_{parede}) é indicada pela equação (4.62).

$$D_2 = 2 * D_1 \tag{4.57}$$

$$L_{I} = 4 * D_{2} \tag{4.58}$$

$$\Delta E = \frac{(D_2 - D_1)^3}{4 * D_1 * D_2}$$
(4.59)

$$U_{\text{saida}} = \frac{Q}{L * D_2} \tag{4.60}$$

 $borda_{livre} = 0,1 * (U_1 + D_2)$ (4.61)

$$H_{\text{parede}} = \text{borda}_{\text{livre}} + D_2 \tag{4.62}$$

Em que: L_I é o comprimento da bacia de dissipação (m)

 U_{saida} é a velocidade de saída

H_{parede} é a altura da parede lateral.

No caso da **Bacia tipo II**, o Froude é maior que 4,5 e a velocidade próxima a 20 m/s. O valor D_1 é igual a profundidade do escoamento na entrada, o valor de D_2 é a profundidade conjugada a jusante e a profundidade de saída é 5% superior a D_2 . O comprimento L_{II} é aproximadamente 4,3 vezes D_2 .

Na **Bacia tipo III** é também utilizada para o número de Froude igual ou maior que 4,5, mas para velocidades a montante menores que 20 m/s. Por sua vez, possui comprimento (L_{III}) (adotado igual a 2,7*D₂) com dimensões do bloco dissipador dados por w₁ e h₁. A Figura 4.17 mostra a bacia de dissipação tipo III, com sua configuração geométrica.

Figura 4.17 - Bacia de dissipação tipo III

A altura do dente (*baffle piers*) (h3) foi calculada no programa pela equação (4.63). A altura da saliência (*end fill*) (h4) do trecho final da bacia de dissipação é obtida no *software* pela equação (4.64).

$$\frac{h_3}{D_1} = 0,1652 \,\mathrm{Fr}_1 + 0,6768 \tag{4.63}$$

$$\frac{h_4}{D_1} = 0.0542 \,\mathrm{Fr}_1 + 1.0167 \tag{4.64}$$

Em que: h_3 é a altura do baffle pier (m)

h₄ é a altura da saliência *end fill(m)*

Os blocos dissipadores da bacia de dissipação **tipo IV**, para 2,5 \leq Fr \leq 4,5, admitiu-se as considerações expostas na Figura 4.18. Na figura são mostradas as relações dimensionais entre espessura, espaçamento entre os blocos dissipadores, a altura do bloco e a profundidade da linha d'água, baseadas no método da entidade U. S. Bureau of Reclamation.

Figura 4.18 - Bacia de dissipação IV

O comprimento foi calculado pela equação (4.65).

$$\frac{L_{IV}}{D_2} = 2,0543 \ln Fr_1 + 2,8865$$
(4.65)

Em que: L_{IV} é o comprimento da bacia de dissipação (m)

D₂ é a profundidade da linha d'água na saída (m)

A seguir é exemplificada uma bacia de dissipação.

Exemplo 4.6: Dimensionamento de uma Bacia de Dissipação por Ressalto Hidráulico

Dimensione uma baia de dissipação para uma vazão de 10 m³/s, com largura e profundidade a montante de, respectivamente, 2,5m e 0,215m.

A Figura 4.19 ilustra a aba *Dados e Resultados* com os dados de entrada solicitados. Na aba *Resultados* verifica-se uma classificação do tipo III, com Fr=12,81, velocidade de entrada de 18,6 m/s, dentre outros valores calculados.

RW Estruturas Hidráulicas - Bacias de Dissipação por R	lessalto Hidráulico	Estruturas Hidráulicas - Bacias de Dissipação por Ressalto	o Hidráulico		
Dados Resultados Visualização Relatório	2	Dados Resultados Visualização Relatório			
Informações A metodologia adotada para a for fundamentada em estudos do orgar	mulação dos cálculos foi iismo norte-americano U.S.	Parâmetros Hidráulicos:			
Bureau of Reclamation (Peterka, 1984)	, que propõem alguns tipos de	Tipo de Bacia	USBR Tipo III		
bacias padroni	zados.	Número de Froude a montante	12,81		
and the second sec		Velocidade de entrada (m/s)	18,6		
Dados necessários:		Profundidade jusante D2 (m)	3,79		
Vazão (m ³ /c)	10	Comprimento da bacia (m)	10,23		
Va2a0 (11/3)		Borda livre calculada (m)	2,24 🛈		
Largura a montante (m)	2,5	Altura de referência da parede (m)	6,03		
culgara a montante (m)		Energia dissipada (m)	14,01		
Profundidade montante D1 (m)	0,215	Velocidade de saída (m/s)	1,06		
Comandos Calcular Ok	Cancelar	Comandos Visualizar Relatório	Teminar		

Figura 4.19 - Dados e Resultados de Bacias de Dissipação por Ressalto Hidráulico

Já a Figura 4.20 exibe uma visualização em conformidade com o tipo de bacia calculado e os parâmetros para dimensionamento da bacia de dissipação.

CN Estruturas	Hidráulicas	- Bacias de Dissipaçã	io por Ressalto Hidrául	ico 😐	(m) X	🕼 Estruturas Hidráulicas - Bacias de Dissipação por Ressalto	Hidráulico
Dados Re	esultados	Visualização Re	latório			Dados Resultados Visualização Relatório	
Dimensi	ionamen	to da bacia de di	issipação:			Relatório:	
A (m) ^W ₃ (m) h ₃ (m)	0,11 0,45 0,6	B (m) 0,23 S $_{1}$ (m) 0,22 b $_{4}$ (m) 0,37	C (m) 0,12 S ₃ (m) 0,45 D (m) 3,03	w ₁ (m) h ₁ (m) L _{III} (m)	0,22 0,22 10,2	SisCCoH - Sistema para Cálculos de Comp Estruturas Hidráulicas - Bacia de Dissipação p	onentes Hidráulicos por Ressalto Hidráulico
0.00				0.000		Tipo de Bacia	USBR Tipo III 🔺
		USBR	R Tipo III			Número de Froude a montante	12,81
				1/		Velocidade de entrada (m/s)	18,6
		21		-		Profundidade jusante D2 (m)	3,79
		L.VI	B	///		Comprimento da bacia (m)	10,23
		AL A	153 //	//		Borda livre calculada (m)	2,24
	~	h1	$\geq ///$			Altura de referência da parede (m)	6,03
	6	A hit	-11 21-14	-		Energia dissipada (m)	14,01
	-	• p •		४ उत्तराख्याह		Velocidade de saída (m/s)	1,06
		1+	r ^m				-
Comand	los	Relatório	Terminar			Comandos Exportar para Excel Terr	ninar

Figura 4.20 - Visualização de Bacias de Dissipação por Ressalto Hidráulico

É possível visualizar o tipo de bacia calculado, bem como as principais variáveis de dimensionamento, na aba *Visualização*. Neste exemplo, a bacia foi identificada como **USBR Tipo III.**

4.4 Bacias de dissipação em enrocamento

O módulo *Bacias de Dissipação em Enrocamento* foi baseado na metodologia proposta por FHWA (2006). Esse dimensionamento baseia-se nas seguintes hipóteses:

(a) enrocamento possui pelo menos a dimensão de $2D_{50}$ ou $1,5D_{máx}$, em que $D_{máx}$ é o diâmetro máximo das pedras; (b) a relação entre profundidade da linha d'água (h_s) e o D_{50} deve ser maior que 2; (c). o comprimento da bacia de dissipação (L_s) deve ser 10h_s e maior ou igual a $3W_{o}$, sendo W_o a largura do *riprap*; (d) e o comprimento da aproximação (L_A) para o canal de saída da bacia deve ser igual a 15 h_s e maior ou igual a $4W_o$. Os valores de $D_{máx}$ e $D_{mín}$ foram adotados os considerados por Taylor (1973), apresentados nas equações (4.66) e (4.67):

$$D_{max} = D_{100} = D_{50} \cdot \sqrt[3]{4}.$$
(4.66)

$$D_{min} = D_0 = D_{50} \cdot \sqrt[3]{\frac{1}{4}}.$$
(4.67)

Em que: D_0 : Diâmetro mínimo (D_{min}) dos grãos (m)

D_{máx}: Diâmetro máximo dos grãos (m)

D₅₀: Diâmetro médio dos grãos (m)

Além disso, considerou-se o comportamento similar entre grãos com formatos angulosos e arredondados. Em particular, no caso do canal a montante da bacia ter seção retangular e escoamento supercrítico, y_e será igual a profundidade de escoamento ao final do canal. Nas demais situações, a metodologia de cálculo para a profundidade a montante utilizada no programa pode ser consultada em FHWA (2006).

Para este dimensionamento são requeridos alguns dados e decisões do usuário. O usuário inicialmente deve escolher a opção *Best curve* se o regime de escoamento a jusante da bacia for supercrítico. Essa opção é recomendada, também, nos casos em que os danos causados pela falha do funcionamento da bacia forem facilmente corrigidos por meio de manutenções periódicas. Por outro lado, se o regime de escoamento a jusante da bacia for subcrítico ou as consequências de falha da estrutura forem mais severas, o usuário deve selecionar a opção *Envelope curve*. O usuário deve informar, ainda, a largura e profundidade a montante, D_{50} , a profundidade a jusante e a velocidade a montante.

Nos cálculos do *SisCCoH* determina-se o parâmetro de tailwater (C_o), obtém-se a relação h_s/y_e e verifica-se se a relação $h_s/D_{50}\ge 2$ e $D_{50}/y_e\ge 0,1$ foram atendidas. Caso os dados de entrada estiverem fora dos limites estabelecidos, escolhe-se outro valor de D_{50} .

Os valores para C_o dependem do escoamento a jusante da bacia de dissipação (*tailwater* – T_W) e os seus e respectivos cálculos podem ser examinados em (FHWA, 2006).

Calcula-se o comprimento da bacia de dissipação, o comprimento total e a espessura do revestimento. A profundidade na saída e a velocidade são determinadas comparando-se com a velocidade permitida no canal de saída. A profundidade crítica pode ser calculada iterando-se a equação (4.68):

$$\frac{Q^2}{g} = \frac{[y_3(W_B + zy_3)]^3}{(W_B + 2zy_3)}$$
(4.68)

Em que:

z: Declividade lateral (m/m)

y₃ Profundidade na saída da bacia(m)

W_B Espessura na saída da bacia (m)

Este módulo baseou-se na metodologia HEC 14, que por sua vez foi obtida através de estudos empíricos. Logo, as relações dispostas anteriormente são válidas para casos específicos em que sejam verificadas as seguintes expressões: $0,1 \le D_{50}/y_e \le 0,7$ e h_s/D₅₀ <2. Dessa forma, caso uma delas não seja observada, as seguintes notificações são exibidas para o usuário: "Os dados inseridos estão fora das condições de cálculo. D₅₀/y_e < 0,1. Tente outro D₅₀!";"Os dados inseridos estão fora das condições de cálculo. D₅₀/y_e > 0,7. Tente outro D₅₀!"; e, "Os dados inseridos estão fora das condições de cálculo.

Exemplo 4.7: Dimensionamento de Bacia de Dissipação em Enrocamento

Determine uma bacia de enrocamento utilizando o ajuste de curva para a condição de jusante do tipo *Envelope Curve*. Sabe-se que a largura a montante é 2,44 m, profundidade a montante igual 1,22 m, o diâmetro médio do enrocamento (D_{50}) é 0,55m, o nível de água a jusante (T_w) é igual a 0,85 m e a velocidade a montante é igual a 7,63 m/s.

A Figura 4.21 apresenta os dados preenchidos na janela *Estruturas hidráulicas* – *Bacias de Dissipação*. Neste módulo são apresentadas algumas mensagens ao usuário referente à bibliografia utilizada, às particularidades da aplicação das curvas de ajuste e à premissa adotada quando o regime é supercrítico. Depois de preenchidos os dados de entrada e selecionando o botão calcular, caso tenha sido satisfeitas as relações D_{50}/y_e e h_s/D_{50} , o *SisCCoH* abre a aba *Resultados*, indicada Figura 4.22.

ados Resultados Relatório		
Referência As metodologias adotadas para a formulação o foram preconizadas pelo software HEC - 14 (20	los cálculos 06)	Visualização
Curva de Ajuste para a Condição de Jusar	nte da Bacia	
Best Fit Curve En	velope Curve 🛛 🚺	Vet TW
Dados Necessários		
Largura a Montante - W ₀ (m)	2,44	
Profundidade a Montante - y _e (m)	1,22	
Diâmetro Médio do Enrocamento - D 50 (m)	0,55	
Nível de Água a Jusante - TW (m)	0,85	
Velocidade a Montante - V ₀ (m/s)	7,63	RIPRAD TOP OF RIPRAD
		BHOWN BERNEL
Calcular Cance	lar	
		W0/2 APRON
Ok		

Figura 4.22 - Resultados do módulo Bacias de dissipação em Enrocamento

Na Figura 4.22 são apresentados, à esquerda, os parâmetros do dimensionamento da bacia de dissipação e à direita um modelo esquemático apresentando o posicionamento de cada uma das dimensões na estrutura.
5 SINGULARIDADES

5.1 Confluência de Canais

Neste módulo é calculado o perfil da linha d'água nos canais em confluência. São calculados, ainda, a largura máxima da zona de separação (b_s), a largura interna da confluência (b_c) e o coeficiente de contração ($\mu = b_c/B_3$). A Figura 5.1 indica os principais parâmetros de uma confluência de canais.

Figura 5.1 - Esquema da Dinâmica do Escoamento nas Confluência

Para as confluências com escoamento fluvial, o *SisCCoH* utiliza o cálculo da relação $y_1/y_3 = y_2/y_3 = N_y$ pelas metodologias de Taylor (1944), Gurram (1997), Hsu *et al.* (1998) e Coelho (2003), respectivamente apresentadas nas equações (5.1) a (5.4). Estas equações possibilitam verificar o aumento da profundidade a montante da junção da confluência e os índices 1, 2 e 3 correspondem aos trechos do canal principal e secundário a montante e ao canal de jusante, respectivamente.

$$N_{y}^{3} - (1 + 2 Fr_{3}^{2})N_{y} + 2Fr_{3}^{2}[N_{q}^{2}(1 + \cos\theta) - 2N_{q} + 1] = 0$$
 (5.1)

$$N_{y}^{3} - (1 + 2 Fr_{3}^{2})N_{y} + 2Fr_{3}^{2}[(1 - N_{q})^{2} + N_{q}\cos\delta = 0$$
(5.2)

$$N_{y}^{3} - \left(1 + 2\frac{\beta_{3}}{\alpha_{3}}Fr_{3}^{2}\right)N_{y} + 2\frac{\beta_{3}}{\alpha_{3}}Fr_{3}^{2}(1 - N_{q})^{2} + N_{q}^{2}\cos\theta = 0$$
(5.3)

$$\left[1 + \frac{B_2}{B_3}\cos\delta\left(1 - f^2\right)\right]N_y^3 + (1 - 2\beta_3Fr_3^2)N_y^2 + 2\beta_1Fr_3^2\left(1 - N_q\right)^2$$
(5.4)

$$+ 2\beta_2 Fr_3^2 \frac{B_3}{B_2} N_q^2 \cos \delta = 0$$

Em que: N_q é a razão entre Q_2 e Q_3 N_y é a razão entre y_1 e y_2 Q_1 vazão no canal principal antes da confluência (m³/s) Q_2 vazão no canal secundário antes da confluência (m³/s) Q_3 vazão no canal após a confluência (m³/s) θ é o ângulo formado entre o canal primário e o secundário (°) δ , é o ângulo médio entre as linhas do escoamento secundário e principal, igual a 0,85 θ (Gurram, 1997). α é o coeficiente de *Coriolis* β é o coeficiente de *Boussinesq* f é um coeficiente adimensional proposto por Coelho (2003).

Para uma confluência com escoamento fluvial a jusante, Coelho (2003) verifica quatro casos que definem os valores do coeficiente f: (1) quando o escoamento é fluvial a montante e a jusante (f = 0,92); (2) quando o escoamento é supercrítico apenas no canal secundário a montante (f=1,02); (3) quando é supercrítico apenas no canal a montante principal (f = 0,95); ou (4) quando o escoamento é torrencial em todos os trechos a montante da confluência (f = 1,01).

A formulação utilizada para o cálculo dos coeficientes de *Boussinesq* foi baseado na Tabela 5.1, (Coelho, 2003):

β	Fr<1	1 <fr<1,5< th=""><th>Fr>1,5</th></fr<1,5<>	Fr>1,5
β1	$0,38 (1 - Nq) + 0,13Fr_1 + 0,98$	$3,82 - 1,92Fr_1$	1,00
β2	0,38 (Nq)+ 0,13Fr ₂ +0,98	$3,82 - 1,92Fr_2$	1,00
β3	1,36 + 0,13 Fr ₃	$3,82 - 1,92Fr_3$	1,00

Tabela 5.1 - Cálculo dos coeficientes de Boussinesq

Caso ocorra uma transição de regime, N_y é calculado seguindo as metodologias de Ramamurthy *et al.* (1988), Hager (1989) e Kumar (1993).

As equações (5.5) a (5.7) foram propostas por Ramamurthy et al. (1988).

$$\alpha_3 = 1,25 + 0,5N_q , para \ 0,23 \le N_q \le 0,6$$
 (5.5)

$$\frac{\beta_3}{\alpha_3} = 1 - 0.24 N_q , \text{ para } 0.23 \le N_q \le 0.6$$
(5.6)

$$N_{y}^{3} + (0.48N_{q} - 3)N_{y} + \frac{1 - N_{q}}{0.63 + 0.25N_{q}} = 0$$
(5.7)

Alternativamente, o programa também apresenta os resultados de N_y conforme formulação de Hager (1989) que são calculadas no programa pelas equações (5.8) e (5.9).

$$N_{y} = 1 + 0.92 \left\{ (0,1 + N_{q}) \left[(1 - N_{q}) + N_{q} \left[sen \left(\frac{\theta}{2} \right) \right]^{\frac{3}{2}} \right] \right\}^{\frac{1}{2}}$$
(5.8)

Em que:

$$N_{y} = \frac{y_{cr1}}{y_{cr2}} = \frac{y_{cr2}}{y_{cr3}}$$
(5.9)

Além dos resultados de N_y , obtidos nessas equações, o programa também obtém N_y conforme estudos de Kumar (1993), pela equação (5.10):

$$N_{y}^{3} - 3N_{Y} + 2[(1 - N_{q})^{2} + N_{q}^{2}\cos\theta]$$
(5.10)

No caso do regime de transição é verificado pelas equações (5.11) a (5.13), formulada por Christodoulou (1993), a formação de ressalto hidráulico na junção.

$$\left(1 + \frac{Q_2}{Q_1}\right)^{\frac{4}{3}} - a_2 \left(\frac{Q_2}{Q_1}\right)^{\frac{4}{3}} \ge a_1$$
(5.11)

(5.12)

Em que:

$$a_{1} = \frac{(1 + 2Fr_{1}^{2})\mu^{\frac{1}{3}}}{Fr_{1}^{\frac{4}{3}}(3 + f\cos\theta \frac{b_{2}}{b_{1}})}$$

$$a_{2} = \frac{2\left(Fr_{2}^{2}\frac{b_{1}}{b_{2}}\right)^{\frac{1}{3}}\mu^{\frac{1}{3}}\left(1 + \frac{f}{2Fr_{2}^{2}}\right)\cos\theta}{(3 + f\cos\theta\frac{b_{2}}{b_{1}})}$$
(5.13)

Já em confluências com escoamentos torrenciais os cálculos foram baseados em Schwalt e Hager (1995). A Figura 5.2 apresenta um esboço da confluência de dois canais em regimes torrenciais.

Figura 5.2 - Esquema da junção de dois escoamentos torrenciais

Na metodologia adotada pelo *SisCCoH* é considerada a razão (Y) entre as alturas das lâminas d'água do canal principal (y_1) e secundário (y_2). A profundidade máxima $y_{máx}$ é calculada pela equação (5.14), e a distância do ponto A, do encontro dos canais, ao ponto final da zona de separação X_{AB} , é calculada pela equação(5.15), segundo Schwalt e Hager (1995).

$$y_{max} = \sqrt{y_1 y_2} \left[2 + 1,08 \left(\frac{Fr_1 Fr_2}{Fr_1 + Fr_2} \right)^2 \right]$$
(5.14)

$$X_{AB} = \frac{1,65 b_1}{0,55 + 0,05\theta} \left(\frac{Fr_1}{Fr_2^{1/3}}\right) Y^{\frac{2}{3}}$$
(5.15)

As condições da interrupção do regime torrencial estão apresentadas nas seguintes relações:

 $\theta < 15^{\circ} \Rightarrow A=0; \theta > 15^{\circ} \Rightarrow A=2; \theta < 38^{\circ} \Rightarrow B=0; \theta > 38^{\circ} \Rightarrow B=1; 15^{\circ} < \theta < 38^{\circ} e$ $b_1=b_2 \Rightarrow Fr_p = 3$. Quando $Fr_1 e Fr_2$ forem superiores a Fr_p (número de Froude após o estreitamento) o escoamento é rigorosamente torrencial.

Exemplo 5.1: Dimensionamento de uma Confluência de Canais

Dimensione uma confluência de canais em que as larguras dos canais de montante e jusante são iguais a 6m, a declividade dos canais é igual a 0,005 m/m, ângulo de junção é de 45°, o coeficiente de rugosidade é igual a 0,02, a vazão do canal principal a montante (Q_1) é igual a 60 m³/s e a vazão no canal secundário a montante (Q_2) é igual a 40 m³/s.

A Figura 5.3 exemplifica a entrada de dados neste módulo, na região *Dados Necessários*. Na região a direita *Tabela de Valores* é possível visualizar os valores digitados.

Figura 5.3 - Dados da Confluência em Canais Retangulares

Após digitar os dados para cada canal é necessário confirmar os valores digitados e, após preenchidos todos os dados, basta clicar em calcular. A região *Imagem*

mostra uma ilustração com os detalhes da geometria em planta e em uma seção AA na confluência do canal.

Após clicar em calcular, o *SisCCoH* calcula a profundidade em cada um dos trechos pela equação de Manning, o número de Froude e então, utiliza as equações apresentadas anteriormente para o cálculo do N_y para determinar a profundidade a jusante da junção.

A Figura 5.4, a seguir, apresenta os resultados calculados pelo programa, permite ao usuário escolher a relação N_{y_i} calcula a profundidade na confluência e calcula o perfil da linha d'água.

Dados Básicos de Saída		Cálculo do Perfil de Linha D'a	água		
		Selecione o canal para visual	izar os resultados do r	nesmo:	
Nq	0,4	0,4 Principal Jusante			
δ (Gurram et al., 1997) (graus)	38,25	Profundidade Normal - Yn (n	n)	3,4419 3.048	
Ny (Taylor, 1944) (m)	1,383	Profundidade Crítica - Yc (m)			
Ny (Gurram, 1997) (m)	1,29	Número de Froude - Fr		0.8333	
Ny (Hsu et al., 1998) (m)	1,383	Coeficiente Boussinesa		1,2505	
Nu (Coolho 2002) (m)	1,477	1			
Ny (Coemo, 2005) (m)			Perfil de Linha D'água (Canal 3)		
Ny máximo	1,477	Perfil de Linha	a D'água (Canal 3)		
Ny máximo	1,477	Perfil de Linha Δy	a D'água (Canal 3) ΣΔχ		
Ny máximo	cular Perfil	Perfil de Linha Δγ 4,760	a D'água (Canal 3) ΣΔχ 0,000		
Ny Adotado 1,383 • Ca	cular Perfil	Δy 4,760 4,733	a D'água (Canal 3) ΣΔχ 0,000 -7,186		
Ny Adotado 1,383 - Ca	cular Perfil	Δγ 4,760 4,733 4,705	a D'água (Canal 3) ΣΔχ 0,000 -7,186 -14,410	×	
Ny Adotado 1,383 - Ca Dados para Dimensionamento	cular Perfil	Δγ 4,760 4,733 4,705 4,678	a D'água (Canal 3) ΣΔχ 0,000 -7,186 -14,410 -21,672	× III	
Ny Adotado 1,383 Cal Dados para Dimensionamento Y confluência (m)	cular Perfil	Δγ 4,760 4,733 4,705 4,678 4,650	a D'água (Canal 3) ΣΔχ 0,000 -7,186 -14,410 -21,672 -28,976		
Ny Adotado 1,383 Cai Dados para Dimensionamento Y confluência (m) Ls (m)	4,76 2,974	Δγ 4,760 4,733 4,705 4,678 4,650 4,623	a D'água (Canal 3) ΣΔχ 0,000 -7,186 -14,410 -21,672 -28,976 -36,322		
Ny Adotado 1,383 Ca Dados para Dimensionamento Y confluência (m) Ls (m) Bs (m)	4,76 2,974 0,937	Δy 4,760 4,733 4,705 4,678 4,650 4,623 4,595	a D'água (Canal 3) ΣΔχ 0,000 -7,186 -14,410 -21,672 -28,976 -36,322 -43,712	× ш	
Ny Adotado 1,383 Ca Dados para Dimensionamento Y confluência (m) Ls (m) Bs (m) Bc (m)	4,76 2,974 0,937 5,063	Δy 4,760 4,733 4,705 4,678 4,650 4,623 4,595 4,568	a D'água (Canal 3) ΣΔχ 0,000 -7,186 -14,410 -21,672 -28,976 -36,322 -43,712 -51,149	маранананананананананананананананананана	
Ny Adotado 1,383 ▼ Ca Dados para Dimensionamento Y confluência (m) Ls (m) Bs (m) Bc (m) µ	4,76 2,974 0,937 5,063 0,844	Δy 4,760 4,733 4,705 4,678 4,650 4,623 4,595 4,568 4,540	a D'água (Canal 3) ΣΔχ 0,000 -7,186 -14,410 -21,672 -28,976 -36,322 -43,712 -51,149 -58,636		

Figura 5.4 - Resultados da Confluência em Canais Retangulares

Por fim, a aba *Resultados* também permite o acesso ao Relatório, a exportação para o Excel ou finalizar o módulo de Confluência, retornando ao menu principal.

5.2 Curvas em Canais

No cálculo do escoamento em curvas de canais, é calculada a altura da superelevação para o escoamento subcrítico e supercrítico para canais retangulares e trapezoidais, baseado nas formulações de Los Angeles Country Flood Control District (1982), este em especial para cálculos da sobrelevação em canais trapezoidais e em estudos de Chow (1959) para cálculo de pontos da sobrelevação, em particular, para o regime supercrítico (Fr>1).

As principais equações utilizadas para o cálculo do regime subcrítico e supercrítico de canais retangulares estão apresentadas nas equações (5.16), desenvolvida por Los Angeles Country Flood Control District (1982), e (5.17), de Chow (1959).

$$\Delta y_{\text{sub,ret.}} = \frac{U^2 * B}{2 * g * r_c}$$
(5.16)

$$\Delta y_{\text{super,ret.}} = \frac{U^2 * B}{g * r_c}$$
(5.17)

Em que: $\Delta y_{sub,ret.}$ é a sobrelevação máxima, caso regime a montante seja subcrítico para canais retangulares (m).

 $\Delta y_{supe,ret.}$ é a sobrelevação máxima, caso regime a montante seja subcrítico para canais retangulares (m).

U é a velocidade do fluxo em (m/s)

B é a largura no topo do canal (m)

g é a aceleração da gravidade (m/s²)

r_c é o raio no eixo central da curva (m)

Já para canais trapezoidais, é utilizado um fator de segurança adicional de 1,15 para escoamento fluvial ou 1,30 para torrencial e o cálculo foi baseado nas equações (5.18) e (5.19) (Los Angeles Country Flood Control District, 1982).

$$\Delta y_{sub,trap.} = 1,15 \frac{U^2 * B}{2 * g * r_c}$$
(5.18)

$$\Delta y_{\text{super,trap.}} = 1.30 \frac{\text{U}^2 * \text{B}}{\text{g} * \text{r}_{\text{c}}}$$
(5.19)

Em que: $\Delta y_{sub,trap.}$ é a sobrelevação máxima, caso regime a montante seja subcrítico para canais trapezoidais (m).

 $\Delta y_{supe,trap.}$ é a sobrelevação máxima, caso regime a montante seja subcrítico para canais trapezoidais (m).

A profundidade final foi calculada pela soma da profundidade normal e a sobrelevação. Para determinar as regiões prováveis com perturbações no escoamento associadas à curva no canal, foi adotada a metodologia sugerida por Los Angeles

Country Flood Control District (1982) que é apresentada na Figura 5.5. Essa figura mostra um trecho de comprimento 2L', seguido pelo comprimento do trecho circular, e por fim por um trecho retilíneo tangente.

Figura 5.5 - Comprimento de trecho com sobrelevação.

O segmento iniciado em BC, com comprimento igual a 5 L', finaliza o trecho da sobrelevação. O comprimento L' depende do ângulo de onda β , que por sua vez, depende do número de Froude a montante da curva, e podem ser calculados pelas equações (5.20) e (5.21).

$$L' = B/TAN(\beta)$$
(5.20)

$$\beta = \operatorname{sen} - 1(\operatorname{Fr}) \tag{5.21}$$

Em que: *L*' semitrecho linear a montante (m).

 β ângulo de onda (°)

Após o cálculo da altura da sobrelevação, caso o regime seja supercrítico e o canal retangular, o *SisCCoH* caracteriza o fenômeno da formação de ondas oblíquas ao longo do canal com um trecho em curva. Conforme apresentado por Chow (1959) é utilizada a equação (5.22) para a obtenção do ângulo interno da curva (θ) que determina arcos formados entre os pontos da sobrelevação máxima e da profundidade mínima do fluxo no canal.

$$\theta = \tan^{-1} \frac{2 B}{(2 * r_{c} + B) * \tan\beta}$$
(5.22)

Em que: θ é o ângulo interno que delimita os pontos máximos e mínimos da onda (°) β ângulo de onda (°)

A Figura 5.6 ilustra os pontos que demarcam os trechos com profundidades máximas e mínimas das ondas ao longo do trecho em curva.

Figura 5.6 - Ondas oblíquas em um trecho de canal em curva

Esse resultado é apresentado no *SisCCoH* na aba *Pontos da Elevação* para canais retangulares. A seguir, será apresentado uma aplicação do *SisCCoH* no dimensionamento de canais em curva.

Exemplo 5.2: Dimensionamento de um trecho de canal em curva

Dimensione um canal retangular em curva de largura igual a 25m, com profundidade de escoamento no inicio da curva de 0,56m, com velocidade inicial de 7,10 m/s, com número de Froude a montante de 3,02 e raio de curvatura do eixo do canal igual a 50m.

A Figura 5.7 exibe a janela entrada de dados, à esquerda e a altura da sobrelevação do canal em curva, à direita.

Figura 5.7 - Dados e Altura da Sobrelevação de Curvas em Canais

Como o número de Froude é maior que 1, os pontos da sobrelevação são calculados e mostrados na Figura 5.8.

Figura 5.8 - Pontos de sobrelevação de Curvas em Canais

Na Figura 5.9 são mostrados os resultados do SisCCoH, sendo que à esquerda apresenta-se o posicionamento do ângulo que delimita os pontos de máximo e mínimo da onda e, à direita, o cálculo do comprimento da sobrelevação

💷 Singularidades - Curvas em Canais		Car Singularidades - Curvas em Canais			
Dados 🛛 Altura da Sobrelevação 🛛 Pontos da Sobrelevação 🖉 Comprimento da Sobrelev	/ação Relat	Dados	Altura da Sobrelevação Pontos da Sobrelevação Co	mprimento da Sobrelevação Relatór	
Comprimento da Sobrelevação		Rela	tório:		
Largura do Topo do Canal - T (m)	2,5		SisCCoH - Sistema para Cálculos de Comp	nentes Hidráulicos	
Ângulo da Onda - β (graus)		Escoamento em Degraus - Regime de Escoamento			
Comprimento da Perturbação do Efeito da Sobrelevação – L' (m)			Resultados	*	
Comprimento Total do Efeito da Sobrelevação a Montante da Curva - 2L' (m)			Altura da Sobrelevação		
Comprimento para o Efeito da Sobrelevação Máxima a Jusante da Curva - 3L' (m)		Pro	fundidade de Escoamento - y(m)	0,56	
		Sol	relevação do Escoamento - Δysupercrítico (m)	0,257	
Comprimento para Anulação do Efeito da Sobrelevação a Jusante da Curva -		Pro	fundidade Total - ytotal (m)	0,817	
5L'(m)		Lan	gura da Superfície do Escoamento - T(m)	2,5	
Sem sobretervação		Ânţ Ânţ Dis Dis	ulo que marca os pontos de máximo e mínimo da onda (ulo da Onda - β (graus) (ância AA' - CD (m) (ância AA' - FG (m)	- 0 (7,914 19,337 6,906 13,812	
Sobrelevação Sobrelevação Sobrelevação varia de Opra- misióna para 0			Comprimento da Sobrelevação		
			gura do Topo do Canal - T (m)	2,5	
			ulo da Onda - B (graus)	19 337	
Comandos Relatório Terminar		Com	Exportar para Excel	nar	

Figura 5.9 - Comprimento da Sobrelevação e Resultados de Curvas em Canais

REFERÊNCIAS BIBLIOGRÁFICAS

- ABT, S. R.; THORNTON C. I; GALLEGOS, H. A; ULLMANN, C. M. Round-Shaped Riprap Stabilization in Overtopping Flow. Journal Hydraulic Engineering, v. 134(8), p. 1035-1041, 2008.
- ABT, S. R.; WITTLER, R. J.; RUFF, J. D.; LAGRONE, D. L.; KHATTAK, M. S.; NELSON, J. D.; HINKLE, N. E.; LEE, D. W. Development of riprap design criteria by riprap testing in flumes: Phase I. Nuclear Regulatory Commission, Washington, D.C-NUREG/CR-4651, v. 1, 1987a.
- ABT, S. R.; WITTLER, R. J.; RUFF, J. D.; LAGRONE, D. L.; KHATTAK, M. S.; NELSON, J. D.; HINKLE, N. E.; LEE, D. W. Development of riprap design criteria by riprap testing in flumes: Phase II. Nuclear Regulatory Commission, Washington, D.C-NUREG/CR-4651, v. 2, 1987b.
- ABT, S. R.; JOHNSON, T. L. Riprap design for overtopping flow. Journal Hydraulic Engineering, v. 117(8), p. 959-972, 1991.
- BAPTISTA, M. B.; COELHO, M. M. L. P. Fundamentos de Engenharia Hidráulica –
 3a. d.rev. e ampl. Belo Horizonte: Editora UFMG, 2010. 473 p.
- CHANSON, H. State of the art of the hydraulic design of stepped chute spillways. Hydropower and Dams Journal. P. 33-42, 1994.
- CHOW, V. T. Open-Channel Hydraulics. McGraw Hill Book, 1959. 680 p.
- CHAUDHRY, Hanif. Open-Channel Flow. 2a edição. Editora: Spriner, 2008. P.279-283.
- CHRISTODOULOU, G. C. Incipient hydraulic jump at channel junctions. Journal of Hydraulic Engineering, ASCE. v. 119, n. 3, p.409-421, mar. 1993.
- COELHO, M. M. L. P. Comportamento hidráulico em confluência de canais: uma abordagem conceitual e experimental. Tese, Universidade de São Paulo -USP, São Paulo, 271p, 2003.

Design Manual Hydraulic. Los Angeles Country Flood Control District. 1982.144 p

- FHWA. Federal Highway Administration. US Department of Transportation. HEC-14 (Hydraulic Engineering Circular nº 14). Hydraulic Design of Energy Dissipators for Culverts and Channels. 3^a edition, 2006.
- GOMES, J.F 2006. Campo de pressões: condições de incipiência à cavitação em vertedouros em degraus com declividade IV: 0,75H. 2006. 161 f. Tese (Doutorado) - Instituto de Pesquisas Hidráulicas, Universidade Federal do Rio Grande do Sul, Porto Alegre."
- GREATED, C. A. Supercritical flow through a junction. La Houille Blanche. 8, p. 693-695. 1968.
- GURRAM, K. S., KARKI, K. S., HAGER, W. H. Subcritical junction flow. Journal of Hydraulic Engineering, ASCE. v. 123, n. 5, p. 447-455, mai., 1997.
- HAGER, W. H. Discussion: Separation zone at open-channel junctions. Proc. ASCE Journal of Hydraulic Engineering. v. 113, HY4, p. 539-543, 1987.
- HAGER, W. H. Transitional flow in channel junctions. Proc. ASCE Journal of Hydraulic Engineering. v.115, n. 2, p. 243-259, fev 1989.
- HAGER, W. H. Supercritical flow in channel junctions. Proc. ASCE Journal of Hydraulic Engineering. v.115, n. 5, p. 595-616, mai, 1989.
- HSU, C., WU, F., LEE, W. Flow at 90o equal-width open-channel junction. Journal of Hydraulic Engineering, ASCE. v. 124, n. 2, p. 186-191. 1998.
- HSU, C., LEE, W., CHANG, C. Subcritical open-channel junction flow. Journal of Hydraulic Engineering, ASCE. v. 124. n. 8, p. 847-855, 1998.
- KHATSURIA, R. M. Hydraulics of spillways and energy dissipators. Marcel Dekker, New York, 95 – 124, 2005.
- KUMAR, S.G. Transitional flow in channel junctions. Journal of Hydraulics Research, ASCE. v. 31, n. 5, p. 601-604, 1993.

- OHTSU, I.; YASUDA, Y.; TAKAHASHI, M. Flow characteristics of skimming flow in stepped channels. Journal of Hydraulic Engineering, v. 130, p. 880-869, 2004.
- PETERKA, A. J. *Hydraulic design of stilling basins and energy dissipators*. 8^a reimpressão. Denver: Bureau of Reclamation, 1984. 225 p.
- PINHEIRO, A. N. Estruturas Hidráulicas Obras de Dissipação de Energia. Instituto Superior Técnico: Departamento de Engenharia Civil e Arquitectura -Seção de Hidráulica e Recursos Hídricos e Ambientais, 2006. 28 p. Disponível em: https://dspace.ist.utl.pt/bitstream /2295/133426/1/ obras%20de%20dissipacao %20de%20energia_EH_2006.pdf>.
- RAMAMURTHY, A. S., CARBALLADA, L. B. & TRAN, D. M. Combining open channel flow at right angled junctions. Journal of Hydraulic Engineering, ASCE. v. 114, n. 12, p.1449-1460, dez. 1988.
- SCHWALT, M., HAGER, W. H. Experiments to supercritical junction flow. Experiments in fluids. n. 18, p. 425-437, 1995.
- TAYLOR, E. H. Flow characteristics at rectangular open-channel junctions. Transactions ASCE. v. 109. p. 893-912, 1944.
- TAYLOR, K. Slope Protection on Earth and Rockfill Dams. 11° Congresso das Grandes Barragens. Madrid.
- YASUDA, Y.; TAKAHASHIM, M.; OHTSU, I. Energy dissipation of skimming flows on stepped –channel chutes. 29th IAHR Congress, Beijing, 2001.

ÍNDICE REMISSIVO

A

área molhada, 24, 3, 5

B

Bacias de dissipação, 44, 49, 51, 52 Bueiros, 18

С

Condutos Forçados, 9, 14 confluência de canais, 10, 14, 16, 53, 57, 65 Confluência de Canais, 14, 53, 57 Coriolis, 6, 8, 12, 54 crítica, 3, 4, 6, 3, 4, 6, 8, 9, 10, 12, 13, 14, 18, 19, 23, 24, 27, 31, 35, 36, 38, 43 Crítico, 3, 4 curvas, 16, 6, 11, 51, 58 Curvas em Canais, 14, 58

D

declividade crítica, 6 degraus, 4, 9, 10, 14, 9, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 36, 39, 40, 41, 43, 65 Departamento de Engenharia Hidráulica e Recursos Hídricos, 2, 9

E

energia dissipada, 27, 28, 40, 45 energia específica, 5 enrocamento, 10, 14, 16, 15, 16, 17, 49, 50 escoamento bruscamente variado, 9, 8 escoamento crítico, 3 escoamento em degrau, 16, 40 escoamento gradualmente variado, 9, 5, 7 escoamento uniforme, 9, 14, 23 Escoamentos Livres, 14, 23, 7, 9 Estruturas hidráulicas, 14, 41, 51

L

linha d'água, 5, 6, 7, 8, 13, 31, 44, 46, 49, 53, 58

M

Manning, 21, 23, 24, 25, 6, 7, 15, 16, 17, 58 máxima eficiência, 16, 21, 22 método de Newton-Raphson, 6

Ν

Nappe Flow, 14, 16, 22, 23, 24, 25, 27, 28, 29, 30, 31 número de Froude, 24, 25, 5, 9, 10, 12, 14, 27, 35, 41, 44, 45, 58, 60, 62

Р

perda de carga, 3, 17, 18, 19, 20, 9, 10, 14, 20, 40, 41 Pimenta de Ávila Consultoria, 15 profundidade conjugada, 9, 10, 12, 13, 32, 45 profundidade hidráulica, 24

R

Ressalto, 14, 9, 44, 45, 47, 48

ressalto hidráulico, 16, 8, 10, 11, 13, 14, 15, 24, 28, 31, 32, 33, 44, 55 *riprap*, 49, 64

S

seção circular, 22, 12 seção retangular, 21, 25, 2, 9, 10, 12, 49 seção trapezoidal, 12, 17 Seções Regulares, 14, 23, 7, 9 Singularidades, 14 *SisCCoH*, 1, 9, 10, 12, 14, 15, 16, 17, 19, 21, 22, 24, 25, 2, 5, 6, 7, 8, 9, 11, 12, 13, 16, 18, 19, 22, 23, 31, 35, 41, 43, 44, 51, 53, 56, 58, 60, 61, 63 Skimming Flow, 3, 5, 14, 16, 22, 23, 24, 25, 26, 31, 33, 34, 36, 37, 39, 40 *software*, 9, 10, 6, 9, 12, 16, 33

Т

transição, 14, 8, 14, 22, 23, 24, 55

U

Uniforme, 23

V

Vazão admissível, 4, 5, 18, 19, 20 velocidade, 17, 19, 24, 25, 3, 5, 9, 10, 12, 17, 18, 19, 27, 35, 36, 38, 41, 44, 45, 47, 50, 59, 62 Velocidade, 5, 14, 17, 18, 19, 18, 19, 20

